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Overview

Introduction
Spice Array Linking Technology, SALT, is a modeling interface that links huge data sets to the
IsSpice4 simulator. It was built using the Intusoft Code Model Software Development Kit,
CMSDK. The interface is composed of two parts; the SALT kernel, array.dll, and a set of OLE2
automation servers. The SALT kernel interfaces and synchronizes data arrays from external
software or hardware. The OLE2 automation servers represent a set of pre-defined Spice models
which dynamically link to IsSpice4 at run time. They also link to other OLE clients using a
rendering server which is supplied with SALT. The rendering server is used to view simulation
results while the simulation is running using a unique running object implementation. Intusoft
provides several servers, along with source code. These servers can be used as provided or,
with the CMSDK, you can develop servers which are tailored to your specialized applications.

As the name implies, the type of data used by SALT is an array. The array is a matrix of time or
frequency dependent data. It can be used to represent a sound, such as a WAV file, large sets of
analog simulator data taken from IsSpice4, abstract data taken from hardware, or even links to
other software. The possibilities are virtually endless.

SALT is ideal for the simulation of tracking and control problems which are common to robotics,
guidance and navigation, image tracking, toys and household appliances. These problems span
technologies from active and passive electronic components to signal and image processing and
heuristic control algorithms. Linking the basic arrays and your own SALT servers, to the IsSpice4
simulation engine allows you to perform a comprehensive simulation of these problems. In some
cases, the simulation can operate in real time and be used to collect data and test algorithm
performance without first building prototype control and signal processing hardware.
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The SALT Interface
The SALT interface, shown below, takes advantage the power of Intusoft’s CMSDK and
Microsoft’s OLE2 technology. The CMSDK created the SALT kernel which consists of a new
node type, an Array node, and 5 array models; source, sink, array, mat_toa, and ato_mat. In the
figure, the SALT kernel is represented by the IsSpice4 XSPICE/ array.dll path. This kernel uses
two memory mapped files (MMFs), public and private, to process the array data as it is sent from
model to model. The memory mapped file is named using a convention that makes it accessible
to any other software that knows key features of the data.

OLE2 comprises the remainder of the SALT interface. Three of the models in the SALT kernel,
source, sink and array, are OLE Automation Controllers. Depending on the model parameters
provided, these OLE Automation Controllers make use of various OLE Automation Servers that
are provided. This portion of the interface is represented by the array.dll/fourier.dll path. For the
sake of simplicity only one sever is shown in the figure. Any number of servers may be present
and, if present, would be placed along side the fourier.dll shown in the figure.

IsSpice4

XSPICE

Array.dll

  fourier.dll
OLE in-proc
   Server

OLE
Running Object

Table
Storage

OLE Client

Render
Server

get 
objec

t “
pointer

”

    
  fr

om name Register

Add name
Get name

memory mapped file

private file, instance
output goes here

memory mapped file

Running 
Object
Name List

memory mapped file

public file, resolved
node data goes here

DoVerb Render

Draw in Client 
space and save
in client storage

op=fourier

SALT
Kernel

Other
Servers

The SALT interface includes a viewing utility, render.dll, that is an OLE InProcess server,
embeddable in any OLE client application. In the figure, this portion of the SALT interface is
represented by the Render Server, OLE Client, the Running Object Name List MMF, the OLE
Running Object Table, and the array.dll. In short, a Render object is placed in an OLE container
application, such as Microsoft Word, or the Oclient sample OLE client application provided with
SALT. The Render object registers itself in the OLE Running Object Table (ROT), then supplies
a name using the name of the circuit and the node which is to be viewed in the Running Object
Name List (RONL). As the simulation progresses the kernel, array.dll, queries the RONL for
registered names. If any are found, data is sent to the object using that name using standard
OLE2 interfaces. The Render server then draws the data into the client application. The data
from the simulation is stored through the Render server in the client application.
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The same node can have more than one instance of the Render server connected to it. This
allows different presentations of the same data, or similar presentations in different Clients.

OLE Automation
This is a brief description of OLE Automation for those readers who are not familiar with this
technology. More detailed descriptions can be found in various Microsoft references. OLE
Automation is a technology that allows one OLE application, an OLE Automation Controller, to
take advantage of services provided by another OLE application, an OLE Automation Server.
The service provided will depend on the server, but is always provided though a standard object
interface. The interface is used to expose any capability through a cross-application, object-
based interface.

Referring to the pervious figure, the array.dll contains the OLE Automation Controllers. On
behalf of IsSpice4, array.dll will request the OLE automation servers, fourier.dll and others, to
provide computing services to complete a simulation.

The SALT Kernel

The Array DLL
The SALT kernel, array.dll, consists of the Array Node and Array models. The Array node is
responsible for calculating the correct array data which is passed from node to node. The array
models within the array kernel are responsible for calculating the correct outputs for a given
input. This requires that they call the OLE servers providing the calculation services.

The kernel is also responsible for updating all running objects listed in the running object name
list. This process is covered in the Render chapter.

The Array Node
IsSpice4 contains different types of data nodes to accommodate analog, digital, and sampled
data. With array processing, we introduce another node type, the array node. An array node can
be considered a collection of IsSpice4 vectors like a bus. Array nodes can represent giant data
sets, such as movies or sound tracks, or a smaller collection of IsSpice4 analog or digital signals.
To accommodate this wide variety of signals, a unique node data structure is used. The contents
of this structure are given below:

double state: simulation time
int val: an auxiliary value to force an iteration, increment until stable
int model: used to decide the type cast of the instance
void * instance: a cpp instance pointer to the object that

places data in the output node’s memory mapped file

Each node of an array model will have a copy of this structure associated with it. The C++
instance pointer (this) of the model is saved in the array node structure, along with its model
type. The actual array data is stored in a MMF. When the kernel requires data to be updated, the
array kernel calls the model which is pointed to by the instance pointer of the node. The model is
then responsible for updating the data in the MMF.

The naming convention used for the MMFs is given in Appendix B. Any object that knows the
naming convention may attach to the MMF.
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Array Models
Five basic array models have been constructed to operate on array node data. These models
are;

mat_src: an array source that gets arrays from files
mat_snk: an array sink that saves arrays in files or sound devices
array: performs various matrix operations; convo lution, transforms, etc
ato_mat: converts analog data to arrays
mat_toa: converts arrays to analog data

The first three models are OLE Automation Controllers, and perform the all of the manipulation
and initialization of the array data. The last two models are used to interface the array data to the
analog data.

The OLE Automation Controllers depend on two IsSpice4 model parameters to configure the
OLE Server and request the correct service. These model parameters are “op” and “argname”.
The op parameter is used to construct the OLE ID that will be used to query the registry. If the
OLE Server is found, the registered object will run and initialize itself. The argname parameter
will determine which service the running object will provide to the OLE Controller.

As an example, let’s take a look at the model for a mat_src;

.MODEL mat_src_001 mat_src( op="source" dim=[4096] period=.2 compress = 0
input=hello.wav argname="sound_file wavelet daub20 nplay")

Notice that “op” is set to “source”. This will tell the kernel to query the registry for Array_Source.
The response will be to load the server using that ID (in this case, source.dll). The “argname”
parameter is parsed by the kernel and the first value is used as the service that is being
requested. In this case, “sound_file” requests a service that reads data from a sound (.WAV) file.
This wave file is provided as the argument to the “input” parameter. All of the other OLE
Automation Controllers function in a similar manner.

The ato_mat and mat_toa models are specially designed models for interfacing the array node
data to and from the analog data of IsSpice4. A key feature of the mat_toa and ato_mat models
is their data ripping capability. The “loc=” model parameter is used to specify  the location of the
analog data in the array. See the Bridge.Cir example in the Examples Chapter for more details.

The Array
SALT arrays are essentially a collection of IsSpice4 Vectors. (See Appendix A for more
information about these vectors.) The IsSpice4 vectors in these arrays are almost always
uniformly spaced in time or frequency. The vectors are stored in a multidimensional matrix,
defined by the array model’s “dim” parameter. The first value in this dimension parameter is
always the size of the vector. The second value defines the dimension of a set of vectors. The
remaining values define higher order dimensions of the matrix. This is shown below.
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Matrix types are inherited from their inputs, therefore, the type of a matrix is established by the
original input in the Source or ato_mat model. Two types of matrices exist, STANDARD and
SPICE_PLOT. A SPICE_PLOT matrix has the first element of the second dimension filled with
the default time vector. A STANDARD matrix does not contain this default time vector.

The following flow is an example of how matrix types are inherited. Data flow is from an input
(source) to an output (sink) with a fft and ifft performed on the data. Each block consists of the
server name (source), the array dimension (dim[128,2]), the type of operation (file), the matrix
type (STANDARD_MATRIX), and the data type (REAL).

Source
dim[128,2]
file
STANDARD_MATRIX
REAL

fft
dim[128,2]
fourier, fft
inherited
COMPLEX

ifft
dim[128,2]
fourier, fft inverse
inherited
REAL

Sink
inherited 
file
inherited
REAL

Data within the arrays can be REAL (usually time domain) or COMPLEX (usually frequency
domain). Frequency domain data is always uniformly spaced, and its independent vector is
implied. The independent time vector in a SPICE_PLOT is not transformed using any Fourier or
Wavelet transforms; it’s always a time series. Data compression is not used to reduce the heap
storage, but instead, compression is used to test algorithms and reduce file storage size. This
allows compression and decompression in-place; the array size does not need to be changed.

It turns out that the memory storage requirements for complex and real data are identical when
transformed using the FFT. Complex data has 1/2 as many complex data points as real data, but
has the same number of doubles because each component, real and imaginary use double
storage; which allows the arrays to be identical in size. Storage of complex data is in successive
pairs of real and imaginary points, so the real data pointer can be cast to a complex type after
the transformation from time to frequency.

Calculating A Node Value
The XSPICE event scheduler queues events for “C” code models whenever the state of an event
driven node (digital, array, etc.) changes at the time delay requested by an API function call. The
event queue will iterate the calls to objects that continue to change as a result of their evaluation.
This iterative feature is used in the initialization of array models at time equal to 0. The order in
which objects are evaluated can’t be predicted, so an iterated solution is necessary to propagate
an initial condition from the input to output of all the arrays. The general implementation is to
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initialize each element in the IsSpice4 vectors to the initial input value. (Another possibility you
might try for your servers is to  get the initial condition from a file which contains the value of the
last simulation result.) The iteration is forced to continue by incrementing the “val” member of the
output state as defined in the array node data structure.

Each array output consists of two files, one called “public” and the other called “private”. The
public parts of an array are accessible to the input ports of the array models to which they are
connected. The private parts are used to hold the computations required by the array model.
Computations take place under control of the "event queue" which is part of the IsSpice4
simulator. An event is processed by all array models connected to a node. The private parts are
resolved or copied into the public file for that node when a solution is found. This generates an
event for all models whose input ports connect to that node. This scheme is shown in the
following figure.
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When 2 array outputs are connected together, a process called resolution takes place.
Resolution can be either by summation, replacement, or a combination of the two. The resolution
method for the baseline array models is hard coded into the models, and is the basis for stripping
out certain array channels for analog processing and their later re-insertion into the array data
structure.

Before array data can be processed, it is necessary to fill the array with data from one of the
following models
 mat_src,

array ,
ato_mat .

These models all have clock outputs to signal completion of data processing for an array period.
The “clockout” signals connect to the “clockin” nodes of mat_snk or array models. The “clockin”
signal kicks off an event which signals the model to perform its respective computational
function. The mat_toa model works slightly differently; it generates analog signals based on the
data content of the array. The IsSpice4 time step will be reduced, if required, in order to preserve
the “steptol” accuracy specified by the mat_toa model.
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You can wire array outputs together and clockout signals together. When the combined clock
goes high, all models connected together in this manner will have completed their computation,
and the resulting data will have been transferred to the public data file for that node.

When a rising “clockin” is detected, the appropriate server function is executed and its output
state is changed. The change in output state signals the event simulator to resolve array data
from the instance private file to the node public file. Upon completion of this operation within
array.dll, any running objects connected to this node are updated.

If you cascade “clockout” to “clockin”, then the second array will complete its computation just
after the first. The simulation delay is set to 1e-12 seconds, and the clockout delay is 2e-12
seconds. If, instead, all clock inputs are connected to a single clock source, the computations will
march down a pipeline like a synchronous shift register, each delayed by the clock period.  Clock
periods should generally be set by mat_src models. These clocks will drop low 1/2 period after
going high.
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array

clockout
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clock2

data2
 in    out
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SALT Models

mat_src
Example:
.MODEL mat_src_001 mat_src( op="source" ; use the Array_sound server
+ argname="sound_file  wavelet daub20 nplay" dim=[4096] ; max array size
+ period=.2 compress = 0 ; percentage
+ input=hello.wav)

“Mat_src”, source servers, take input from files, devices or other programs. The output of a
source is a single array, with a digital “clockout” signal that goes high when a period of data has
been read into its array. Another digital output, “nodata”, signals that there is no more data to
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read, even though the simulation is not complete. The source can be made to start over by
connecting its “nodata” output to its “reset” input. Thus the source will repeat the output. The
“clockout” high state has resistive strength so that array output nodes and their associated clocks
can be connected together. The file data is read in again, each time the model is reset. This
allows the data stored in the file to interact dynamically with a simulation. (i.e. The simulation
modifies the data in the file.) The following figure illustrates the use of a mat_src server as a
IsSpice4 signal generator.

 input

out

(File or
device)

(Array)

clockout
(digital)

 reset

nodata

(digital)

(digital)

mat_src

in

out

(Array)

(Analog)

mat_toa

(NC)

(Repeat waveform
when out of data)

Analog
Signals

.MODEL mysource mat_src(
OP="SOURCE"
+       ARGNAME="MATRIX_FILE "
+         DIM=[128 3]
+       PERIOD=99N
+       COMPRESS = 0
+       INPUT=SAMPLE.DTA  )

.MODEL anout mat_toa(
+ LOC=[1 1 1 2] steptol=.002)

...

FILE: SAMPLE.DTA
SCALE 1
DATA REAL
varstep
0 0.670238  1.22239
1e-009 0.679271  1.20273
2e-009 0.688473  1.10607
3e-009 0.693092  0.967208
…
9.9e-008 0.670085 1.23446
END

The server for mat_src is source.dll. The server is accessed by setting the op model parameter
to source . (op=”source” ) At this time this is the only server available for the mat_src model.

The remaining parameters for the mat_src model depend on the function that the server is to
provide. The function is specified as the first argument in the argname  argument list. The value
assigned to argname  is a list of parameters enclosed in quotes. The following functions are
available:
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Function Name Description
sound_file  read  WAV files
matrix_file read external IsSpice4 piece-wise linear data

point files
random output random values
atod hardware interface for A/D converter

The following sections describe each of these functions and the parameters that are allowed for
each. Parameters that are not followed by an equal sign, “=”, are expected to appear on the
argname  argument list. All other parameters appear independently in the mat_src model
statement. In all cases the parameter appears first, followed by an explanation. An example is
provided for each function type.

sound_file:
The current implementation takes data from Microsoft WAV files with the following options:

wavelet Performs wavelet compression. This parameter requires a mother
function to be specified. The percentage compression is given by the
compress  parameter.

daub20  | daub12  | daub4
The wavelet mother function.

play Plays the input sound file. The sound file is played before any
compression is performed.

dim = The dimension of the array that stores the data.
period  = The time that one array represents
compress  = if 0, no compression takes place, otherwise, the value entered is the

percent of the wavelet data that is saved. Compression is by amplitude.
The wave table index is saved at the end of the array data. Data
amplitudes greater than the compression percentage are saved and their
position is determined from their index, up to the number calculated
from the compression percentage. All other data is assumed to be zero.

input = The filename of the WAV file to play.

Examples:
This model represents a mat_src model that will read and play the file hello.wav into an array
that has a size of 4096. The array will represent .2 seconds of the sound contained in hello.wav.
.MODEL modelname mat_src( op="source" argname="sound_file play"
+ dim=[4096] period=.2 input=hello.wav)

This is the same as the previous example except that wavelet compression is imposed on the
data read using the daub20 mother function with a 25% compression. The sound from hello.wav
is not played in this example.
.MODEL modelname mat_src( op="source" argname="sound_file wavelet daub20"
+ dim=[4096] period=.2 compress=25 input=hello.wav)

matrix_file:
Takes data from a file. The IsSpice4 format is given in the Data File Syntax section. The
following model parameters are used:

dim = The dimension of the array that stores the data.
period  = The time that one array represents
input = The filename of the IsSpice4 PWL file to read.

Example
This model represents a mat_src model that will read the IsSpice4 PWL file, Data.Dta into an
array. The array  represents 3 time vectors each 128 elements in length. (See the Array section,
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or the Bridge.Cir example.) Each of the time vectors will represent 99ns of data from the PWL
file.
.MODEL modelname mat_src( op="source" argname="MATRIX_FILE" dim=[128 3]
+ period=99N input=Data.DTA)

random:
Generates a normally distributed “Gaussian” signal with the following options:

val The rms noise value.
offset The DC offset of the noise.
seed The noise seed value.
dim = The dimension of the array that stores the data.
period  = The time that one array represents

A new value is calculated for each ( period / dim[0] ) time step. (Dim[0] represents the first
dimension, time vector, value of the dim parameter.) The seed is used to make data repeatable
(on the same platform) and allow more than one generator with a different sequence. All values
are IsSpice4 floating point numbers.

Example
This model represents a mat_src model that generates a random signal with an rms value of 2
and an offset of .75 using a seed of  167. The signal represents 99ns for each array of data.
.MODEL modelname mat_arc( op="source" argname="random val=2 offset=.75
+ seed=167.00" dim=[128] period=99n)

atod:
The current implementation interfaces the National Instruments AT-2150 A-to-D converter. The
following parameters are used:

national The manufacturer of the A/D converter.
dim = The dimension of the array that stores the data.
period  = The time that one array represents
input = The configuration file for the A/D board

An auxiliary configuration file defines the parameters for the National Instruments device as
follows:

BOARD=AT-2150; the board number; this is the only board supported at this time.
GROUP=1
DEVICE=1
RATE=10K
CHANNEL=0,1,2,3
ITERATIONS=0
GAIN=.9E-4
OFFSET=0
END ; file won’t be searched past this point.

These parameters are used to fill in the NIDAQ API function arguments. Please refer to your
National Instruments User manuals to see how data in this file controls the board. The code that
drives the board is provided in adc.cpp in the Source server subdirectory.

Example
This model represents a mat_src model that reads data from a National Instruments AT-2150
A/D board. Fills the array with data representing 99ns. The configuration file, NIATOD.CFG is
used to configure the software for the AT-2150.
.MODEL modelname mat_src( op="source" argname="ATOD NATIONAL" dim=[128 3]
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+ period=99n input=NIATOD.CFG )

Intusoft will update and expand the capabilities of source.dll so you should create a different
server if you wish to add functionality to the mat_src model. (Do not add new argument keys to
source.cpp.)

mat_snk
Example
.MODEL mat_snk_001 mat_snk( op="sink" ; use the Array_sink server
+ argname="sound_device  wavelet daub20  play" output=hello2.wav  )

“mat_snk” servers are used to output array data to files, devices, IsSpice4 vectors or other
programs. The sink will transfer data from its input on the rising edge of its “clockin” signal. A
“clockout” signal is provided so that a mat_src model can be reset when a series of computations
is complete.

 in output
(Array) (File)

clockin
(digital)

mat_snk

in out
(Analog) (Array)

ato_mat 

Analog
Signals

.MODEL asink mat_snk(op="sink"
+ argname="matrix_file delay=99n"
+ output=sample.dta  )

FILE: SAMPLE.DTA
Project: ARRAY_B
Instance: a2
SCALE 1
DATA REAL
varstep
0 0.670238  1.22239  
1e-009 0.679271  1.20273  
2e-009 0.688473  1.10607  
3e-009 0.693092  0.967208
…
9.9e-008 0.670085 1.23446 
END  

...

clockout
(digital)flush

(digital)

(NC)

.MODEL getmat ato_mat(
+ dim=[100 2] loc=[1 0 1 1]
+ period = 99n)

clockout
(digital)

(NC)

The server for mat_snk is sink.dll. The server is accessed by setting the op model parameter to
sink . (op=”source” ) At this time this is the only server available for the mat_snk model.

The remaining parameters for the mat_snk model depend on the function that the server is to
provide. The function is specified as the first argument in the argname  argument list. The value
assigned to argname  is a list of parameters enclosed in quotes. The following functions are
available:
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Function Name Description
sound_file  save in a WAV file
sound_device speaker output
matrix_file save in IsSpice4 piece-wise linear data point

files
vector save array data in IsSpice4 vectors
dac hardware interface for D/A converters

sound_file
The current implementation saves data in Microsoft WAV files with the following options:

play plays the input sound file, after de-compression.
Note: nplay is undefined, and is used as a simple method to turn play
off; moreover, there is no provision to handle cases of multiple accesses
to the WAV playing driver, so if your simulation is running quickly, you
won’t be able to hear both input and output sounds.

output = names the file in which the sound will be stored. All sound is stored in
WAV format.

Example
This model statement plays the sound being processed by the simulation and also writes it to
Hello2.Wav.
.MODEL modelname mat_snk( op="sink" argname="SOUND_FILE play"
+ output=Hello2.Wav  )

sound_device
The current implementation plays a Microsoft WAV file to the sound hardware installed on your
computer.

Example
This model statement plays the sound being processed by the simulation.
.MODEL modelname mat_snk( op="sink" argname="SOUND_DEVICE")

matrix_file:
Saves the matrix in an IsSpice4 PWL file. The following parameters are defined for a matrix_file
operation.

delay Causes the output time series to be offset by the value specified.
tol Interpolation tolerance.
output = Names the file to which the PWL data will be stored. The format is

discussed in the Data File Syntax Section.

The delay  entry is used to compensate for the period delay built into the array models. It
eliminates the first “dead” period of output. The tol entry assures that the data can be
reconstructed using linear interpolation to the absolute tolerance specified.

Example
This model statement produces an IsSpice4 PWL file with an absolute interpolation tolerance of
10u delayed by 99ns. The PWL file is written to Data.Dta.
.MODEL modelname mat_snk( op="sink" argname="MATRIX_FILE delay=99N
+ tol=10U" output=Data.Dta)

vector:
Saves the array data in a IsSpice4 vector. The following parameters are used:

output = names the file in which the vector data will be stored. See the Data File
Syntax section for a description of the file format.
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Vectors are named using the following convention:

Array type example
Real

independent variable “instance name”_time; a2_time
vectors “instance_name_“vectorNumber” a2_3

Complex
independent variable “instance name”_freq; a3_freq
real part

vectors “instance_name_re_“vectorNumber” a3_re_4
imaginary part

vectors “instance_name_im_“vectorNumber” a3_im_4

The output real-time vectors should be plotted using IntuScope using the IsSpice WFMs…
function as x-y plots. Use the independent vector provided for the array because the default
simulation vector will have a different set of time points.

Example
This statement generates real-time vector output.
.MODEL modelname mat_snk( op="sink" argname="VECTOR")

The statement generates real-time vector output and also writes the data to temp.Dta.
.MODEL modelname mat_snk( op="sink" output=Temp.Dta argname="VECTOR")

dac:
The current implementation interfaces the National Instruments AT-AO-6/10 Analog output
board. The following parameters are used:

initfile ?
output = Names the configuration file used to configure the softwar e interface.

.MODEL HARDSNK MAT_SNK(OP="SINK"
+       ARGNAME="DAC NATIONAL INITFILE=AFILE.DTA"
+       OUTPUT=NIDAC2.CFG  )

An auxiliary configuration file defines the parameters for the National Instruments device as
follows:

BOARD=AT-AO-6/10
GROUP=1
DEVICE=1
RATE=10k
CHANNEL=1,2,3
ITERATIONS=0
GAIN=200
OFFSET=0
END ;  anything below hear is ignored

These parameters are used to fill in the NIDAQ API function arguments. Please refer to your
National Instruments User manuals to see how data in this file controls the board. The code that
drives the board is provided in dac.cpp in the Sink server subdirectory.

Intusoft will update and expand the capabilities of sink.dll so that you may select a different
name for any mat_snk server you wish to add. Do not add new argument keys to sink.cpp.
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array
Example
.MODEL array1 array( dim=[20 5 6] op="Copy" )
.MODEL array2 array( dim=[128 1] op="FOURIER"
+ argname="fft freqToTime")

There are currently three servers available for array; acopy.dll, matrix.dll and fourier.dll. These
servers are accessed by setting the op model parameter to desired server name. (op=”copy”,
op=”matrix”, op=”fourier” )

The remaining parameters for the array model depend on the function that the selected server is
to provide. The function is specified as the first argument in the argname  argument list. The
value assigned to argname  is a list of parameters enclosed in quotes. The Copy server copies
the input to its output. It is primarily used as a template to make custom array servers, however,
it can be used as a delay or ideal transmission line. The Fourier server has several functions
available based on the Fast Fourier Transform (FFT). The Matrix server contains several matrix
math functions. These functions are listed below.

Function Name Description
Fourier Server Name
fft Performs a complex transform in the “forward” direction.
fft inverse Performs the inverse complex FFT.
fft timetofreq Transforms real, time domain data, to the frequency

domain.
fft freqtotime Transforms complex, frequency domain data to the time

domain.
Convolution Performs a convolution filter based on an external

parameter file.
Matrix  Server Name
math Performs matrix math

All of the Fourier and Matrix server functions require the dim model parameter.
dim = The dimension of the array that stores the data.

The first element of the dim model parameter determines the FFT size, while its scaling is
determined by the period parameter. The first element of the dim model parameter must be a
binary radix. (an integer power of 2)

fft
Performs a complex FFT.

.MODEL modelname array( dim=[128 1] op="FOURIER" argname="fft " )

fft inverse
Performs an inverse complex FFT.

.MODEL modelname array( dim=[128 1] op="FOURIER" argname="fft inverse" )

fft timetofreq
Produces the complex FFT for the time series input.

.MODEL modelname array( dim=[128 1] op="FOURIER"
+ argname="fft timetofreq")



15

fft freqtotime
Produces the time series for the complex FFT provided as input.

.MODEL modelname array( dim=[128 1] op="FOURIER"
+ argname="fft freqtotime")

Convolution
The following model parameter is expected:

paramfile  = The filename containing the coeficients of convolution.

The input data is REAL, and will be converted from time to frequency, multiplied by the
frequency domain data from the paramfile , and the result will be converted back to time data.
This is essentially a FIR filter with coefficients defined by the first element of the dim model
parameter. The paramfile  can be either time (REAL) or frequency (COMPLEX) data. The
paramfile  describes the impulse response of a filter, either as a time series or a COMPLEX
frequency response. The filter response is taken over the “period” parameter. If the CIRCULAR
keyword is not present, a frequency domain response will be constructed from an impulse
response that is 2 times the period in length, with the second time period having all zeros. If, on
the other hand, the CIRCULAR keyword appears in the paramfile, the paramfile data will be used
to construct the time series for the second period. For non CIRCULAR convolution, it will be
necessary for the model to convert frequency domain paramfile data to time in order to null the
second period. CIRCULAR convolution will produce valid results if the time series is periodic
about “period”. The non-CIRCULAR filter produces valid results if the impulse response is zero
for the second period.  The paramfile is read in for each simulation so that it can be modified by
the simulation to test adaptive algorithms using an ICL script.

.MODEL modelname array(dim=[128 3] op="FOURIER" argname="convolution"
+ paramfile="Test1.Fir")

math
The following parameters are used to perform matrix math functions:

mul performs multiplication
div performs division
sub performs addition
add performs addition
conj performs conjugation

The parameters are placed on the argname  line in the order that the arithmetic is to be
performed. For example, argname=”math mul conj”  will multiply the inputs then take the
conjugate of the answer.

The transform of frequency to time and its inverse can be handled more efficiently for special
cases, due to symmetry; that is, time has no imaginary component and frequency is symmetric
about the Nyquist frequency. The first frequency cell holds the DC or average value in its real
part and the Nyquist component in its imaginary part, both quantities in the first cell are real, their
imaginary parts are zero.

ato_mat
.MODEL ato_mat_001 ato_mat( dim=[20 5 6] loc=[1 3 2 5 3 3] period = 1)

The dim parameter is used to specify the dimensions of the array used to store data. The loc
parameter specifies the location within the array where the data is to be placed. (See The Array
section for details about the array storage.)
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mat_toa
.MODEL mat_toa_001 mat_toa( dim=[20 5 6] loc=[1 3 2 5 3 3] )

The dim parameter is used for error checking since the actual dimension is inherited from the
device to which the mat_toa is connected. The loc parameter specifies which section of the input
array will be ripped into analog signals. (See The Array section for details about the array
storage.)

Data File Syntax
The Data File is created using the Sink OLE Automation Server using the keyword
matrix_file  on the argname  parameter. The file is a standard ASCII text file with the
structure shown below. If necessary you can create or edit these files with a standard ASCII text
editor.

Header:
Line 1: The source project if the data is generated using a SALT sink.
Line 2:  The instance of the sink that generated the data

Key Items:
SCALE [multiplier | AUTO]
[MATRIX_TYPE=] [STANDARD] [SPICE_MATRIX] makes the default data part of the array
DATA [CIRCULAR] [REAL | COMPLEX]
[varstep | fixedstep]
< …. data items …. >
END

The Header lines are optional, anything can be placed before the key words; however, once the
first key word is entered, the remaining data must be in the order shown. You can also place
anything after the END keyword. Placing additional text after the END keyword is a convenient
way to save several variations of data. In fact, this technique can be used either before the
SCALE key word or after the END keyword.

Data is saved in a row column format. Each row represent the values of the matrix items for the
value of the independent variable given in the first column. SALT will interpolate the data as
required to compute values needed at other times or frequencies, using linear interpolation. All
items for a dimension are entered in a row. Each additional dimension is given another row. The
following table shows a piece-wise linear data point file.

Project: Data
Instance: a56:x2
SCALE 1
MATRIX_TYPE=STANDARD
DATA REAL
varstep
0 1.45871  0.659409
7.80315e-010 1.4505  0.667121
1.56063e-009 1.39972  0.67796
2.34094e-009 1.31225  0.685685
…
END

Each line of the file contains all of the PWL data for a single time or frequency point. The first
entry is the time or frequency default if the “varstep” keyword is present, otherwise if “fixedstep”
the time or frequency is determined from the period parameter and size of the first dimension.
“Varstep” data is considered to be joined by a straight lines. The matrix is filled using linear
interpolation of the default data. If MATRIX_TYPE = SPICE_MATRIX, the default time or



17

frequency data will be read into the first vector of the array data matrix. Subsequent data fills the
dimensioned arrays in the order read. (See The Array section for more information.) AUTO
scaling causes the independent variable to be scaled using the “period” parameter, otherwise, it’s
multiplied by the SCALE value. For example, SCALE 2 will multiply each default scale by 2.0.
Auto scale makes it easy to build filters or data sets that can apply to data that has any period.
The CIRCULAR key is used for convolution filters to indicate that the replica’s second half is not
to be zero filled (see the description of the Fourier array model for more details).

The following table shows how to fill in data describing positions of 4 objects in 3 dimensional
space (x,y,x) for a time period of 0 to 10 seconds (t).

DATA REAL
varstep
0 15 5 30 target 1, t=0, x=15, y=5, z=30
0 5 0 20 target 2, t=0
0 15 0 20 target 3, t=0
0 -30 0 20 target 4, t=0
10 0 5 30 target 1, t=10, x=0, y=5, z=30
10 5 -10 40 target 2, t=10
10 5 -10 40 target 3, t=10
10 30 30 -30 target 4, t=10
END

Note: The italic text is not part of the SALT data file.

Notice that the position of each target is given at each time. In this case, the targets represent
independent points. You could just as easily model them as polygon vertices, making this a
description of a 3D object flying through space. This data can be read into an array, dimensioned
as dim=[4096,4,4]. The data would then be processed into the array, depending on the
simulation time and array clock_in period.  The space scaling; feet, meters etc. will be
interpreted by the model using this data table. This file is used as part of the Sensor.cir example.

Render

Overview
Render is a embeddable 32-bit InProcess OLE server. The DLL is registered using the .REG file
provided with the SALT package. It is used to view the data for any REAL, time domain, array
node.

Render must be started from a client application such as Microsoft Word or the Oclient
application supplied with SALT. All client applications will have an Insert Object command that
allows playable, embeddable, servers to be placed in the clients document. Check the manuals
for your application for the exact menu function and steps.

The Render Dialog
The following sections will discuss the various portions of the Render dialog. Grayed items will
be activated when appropriate. For instance, the Z axis label will be active when the 3D Display
option is checked.
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Project
The circuit filename is entered here. The dialog is case sensitive. Therefore it will be necessary
to know how the file is represented in the File manager, or Explorer before entering the name.

Node
The array node you want to view.

Title and Labels
The Title and Labels of the graph can be entered in these fields. The check boxes determine if
the label or title will be displayed on the screen. There is a 128 character limitation on the strings
entered into these fields. A practical limitation will be set by the viewing area you select for the
graph.

Figure
This section is a rough view of the placed image before the Apply button is selected. Any
changed made to the dialog will be previewed in this area. This allows you to view the output
before committing it to the client site.

3D Display
This activates the 3D display mode. This topic is discussed in more detail in the 3D View section.

Storage
Data collected by Render is stored in one of three different modes. The intent of these modes is
to reduce the amount of data held in memory. Vertex storage saves data proportional to the
viewing area for the entire simulation. The larger the placed image the more data that is stored.
The All storage mode saves all data in the simulation. The Interval storage mode saves only the
data within the X and Y display axis regardless of the simulation parameters. The All storage
mode stores the most data since all data points are stored at any given time. The Interval
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storage mode has the potential for storing the least amount of data since only those points that
fall within the defined X axis will be stored. For the most part, Vertex storage mode will produce
the most useful results as far as memory use is concerned.

Sweep Span
The options here allow you to alter how data is displayed. Period sweep is generally used for 3D
views. It will display a new set of data for each period. The period is determined from the data
collection size which is determined by the model parameters of the simulation. When Period is
selected for a 2D data view, the plot is erased after each period. The Stop option is generally
used for 2D data views and will cause the data to be displayed continuously until the simulation
stops.

Style
The Style list box, and the Edit button next to it, are used to save 3D View styles. In some cases
you may wish to view data from various angles. By saving a view style you can easily recall the
view angle. The 3D View section covers this option in more detail.

Grids
This section of the dialog displays the type of grids that are available.

Log Axes
When Log is selected the edit field for the selected grid becomes the number of cycles.

Origin
The numbers entered here specify the origins for the x, y, and z axes.

Size
The numbers entered here determine the maximum x, y, or z scale. The maximum is the origin
plus the size.

Auto
The auto check box is used to initialize the dialog from the MMF supplied by the simulation. It is
recommended that this option be left on (checked) until a simulation is run. After the dialog has
been initialized with the simulation data the option can be turned off. Once off, the settings of the
dialog can only be changed manualy.

Accept
This button will force a redraw of the previewed image. It has no connection to the image placed
in the client. If you change an option and wish to see its effects, click the Accept button. The
figure area of the dialog will be updated with the latest changes.

Apply
Click this button to apply any changes to the client image. Once this button is clicked the
changes cannot be undone with the Recall button.

Recall
This button functions as an undo. It will only undo the actions up to the last Apply.

Options…
This button activates the Options dialog.
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This dialog controls the appearance of the client image.

3D View
When the 3D Display option is checked the data will be displayed in a 3D space as shown below.
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The 3D view orientation is controlled by placing the mouse in the figure area, holding the left
mouse button down, and dragging the mouse. This will cause the 3D view box to rotate about the
origin, the back corner where the axes meet. If the Shift key is held down while dragging, the
image will translate in the direction the mouse is moved. If the Control key is pressed at the
same time the Shift key is pressed the 3D view box will enlarge or shrink. If the Control key is
pressed by itself the perspective will change allowing you to zoom into the 3D view box. The
following table can describes the key combinations and the effect they produce.

Shift: Translate in x and y.

Ctrl: left-right movement to scale Z axis; up-down to fly in or out of the
image, changing your observational position.

Ctrl + Shift: Scale x and y.

Examples

Bridge.Cir
The Analog-to-Matrix and Matrix-to-Analog node bridges are an integral part to the operation of
SALT. This example will use a simple circuit that takes an analog signal, converts it to a Matrix
element, then converts the matrix element back to an analog signal.
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.MODEL mat_toa_001 mat_toa( dim=[20 5 6] loc=[1 3 2 5 3 3])

.MODEL ato_mat_001 ato_mat( dim=[20 5 6] loc=[1 3 2 5 3 3] period = 1)

The Array-to-Matrix bridge, X1, uses a 20x5x6 matrix as the array node. This matrix is
established by the dim model parameter shown in the ato_mat model. The matrix is shown in
the following figure.
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0,0 0,1 0,2 0,3 0,4
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The first dimension of the dim parameter, 20, establishes the time vector size. This is the depth
of each element shown in the figure. The following two dimensions provide the number of rows
and columns in the array node matrix. In all, we will have 30 time vectors each having a size of
20.

Also shown in the figure is the meaning of the loc model parameter. The loc parameter is the
position in the array matrix where the analog data will be inserted. Here we have a two input
Analog-to-Matrix bridge that has a dimension of 3 hence we will require 6 values to describe the
location for the two analog signals (loc = [1 3 2 5 3 3]). The first analog signal is inserted into the
1st location of the time vector located at the row,column index of 3,2. The second analog signal
is inserted in the 5th location of the time vector located at the row, column index 3,3. One thing to
be aware of is that the indexing is arbitrary. In that we mean the index can be row,column, or
column,row. The choice is up to you. The only gotcha is that you must be consistent throughout
the use of the array as each element uses it. The examples provided will use a row,column
index.

The final parameter to be aware of is the period  parameter. This parameter describes the
meaning of the time vector. In other words, each 20 element time vector will represent onr
period  of data. In this example each time vector will hold 1 second worth of data as defined in
the ato_mat model statement.

During the initial operating point of the circuit each Array element propagates the operating point
voltage through the circuit. Once the simulation begins each periods worth of data is propagated
through the circuit in response to a CLK signal from the Analog-to-Matrix node bridge. The clock
goes high when a periods worth of data has been processed by the bridge. This array data is
then passed to all array models attached to the node. The recipient of the data will know there is
new data when its clk_in goes high. For the case of the Matrix-to-Analog bridge we process any
data present in the array from each time point. For the first period there is no array data. For this
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case the array at the input of the Matrix-to-Array bridge will initialize to the operating point of the
circuit. Hence, from the figure provided we can see that the output will be a period sampled
version of the input delayed by one period.
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Each new period will generate new data that is placed in the array matrix established for the
circuit. There are no new array matrices created during the simulation. Each set of data replaces
the previous.

Copy.Cir
The Array Copy function copies the input to the output whenever the input clock signal goes
high. It acts as a one period delay. In this example we connect two Copy models in parallel to
demonstrate how array node connections are resolved. As shown in the figure below we have a
connection, node 4, where two array nodes connect. At this node the Array node resolve function
will determine the correct array value to pass to the next array model.
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This circuit will look very similar to the previous example. The only difference is the resolution
that takes place at node 4. To resolve the parallel connection the two arrays are summed to
create the output that is passed to the next array model.
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Hello.Cir
This example introduces the Source and Sink Array models. These Array models provide a way
to input and output the Array matrix values. These matrix values can be sent to or taken from
files, hardware devices, or other programs. A simple example is shown below.
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This circuit is comprised of two Array code models, a source (SRC_1) and a sink (SNK_1). The
Source Array model reads input from a Microsoft .WAV file. The information from this .WAV file
is sent directly to a Sink Array model that plays the .WAV file read by the source.

The Source Array model is described by the following model parameters

.MODEL mat_src_001 mat_src( op="source" ; use the Array_sound server
+ argname="sound_file  wavelet daub20 nplay"
+ dim=[4096] ; max array size
+ period=.2
+ compress = 0 ; percentage
+ input=hello.wav  )

The op parameter determines the OLE Automation Server that will provide the function of the
Array model. The argname  parameter describes the command line that configures the server. In
this case the Source server. The sound_file  entry instructs the Source server that the input
will be from a sound file (.WAV) file. The wavelet  entry instructs the Source server to use
wavelet compression on the input using the daub20  mother function, also on this line, with a
compression percentage given by the compress  parameter. The nplay  parameter is a
placeholder used to disable playing the sound. In order to play the sound file replace nplay  the
play  key word. The dim parameter determines the dimension of the array used to store one
period of data from the .WAV file. The period  parameter determines the time length of the
period for one array. The compress  parameter is used to turn on the compression algorithm
chosen by the entries on the argname  parameter. The number entered is a percentage. The
final parameter on this model line is the input  parameter. This value determines the .WAV file
used for input. Depending on the argname  parameter entries this value could have various
meanings. See the Mat_Src section for more details.

The model line for the Sink Array model is quite similar to the Source model.

.MODEL mat_snk_001 mat_snk( op="sink"
+ argname="sound_device  wavelet daub20  play"
+ output=hello2.wav  )

All of the parameters have the same meaning as the source model discussed previously. Here
we have an op parameter that instructs the Array model to use the Sink OLE Automation Server.
The Sink Server will use the argname  parameter entries for configuration. The sound_device
entry instructs the Sink Server to use the available sound card to play the sound for each period
if the play  keyword is passed on the argname  parameter. The output  parameter is used to
enter the filename for the output .WAV file if sound_file  is passed on the argname  line. Here
we pass sound_device  so no output file will be generated.
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The circuit simulation begins by reading one dim worth of data from the device described by the
Source model, X1 SRC_1. After one complete array has been read the Clk_out signal, node 16,
goes high. This places a high on the Clk_in port of the Sink model, X2 Sink_1. This high instructs
the Sink to process one array of data. The play  entry on the Sink’s argname  model parameter
causes the Sink model to play the resulting sound file as soon as the entire sound file has been
processed. Hence, for a 3.6 sec .WAV file the simulation will have to run for a time greater than
3.6 seconds.

The nodata and reset ports of the Source model are used to signal the end of data and to reset
the source respectively. The source can be made to start over by connecting the nodata port to
the reset port. This will cause the source to reset as soon as nodata is detected.

HelloC.cir (Wavelet Compression)
The sound models include a wavelet compression capability. The SRC_1 model syntax,

op="source"
argname="sound_file  wavelet daub20 nplay"

  dim=[4096]
period=.2
compress = 0 ; percentage
input=hello.wav

directs the model to get its data from the file “hello.wav” and apply a wavelet transform using the
daub20 mother function. The array contains 4096 points for each .2 second period, and there is
no compression. Compression, when selected, will eliminate all but the highest amplitude
components. Compression can be changed interactively allowing you to hear the effect as the
compression value is changed.

The Microsoft sound applications interface has no provisions for queueing sounds. If the
simulation runs fast enough with both input and output sound enabled, the output won’t be
played. The nplay  is a convenient place holder for you to remove the “n” to play the input
sound. Shown below is the IsSpice4 control panel along with the stimulus dialog setup used to
study the compression algorithm. See the IsSpice4 User’s Guide for information about
interactivly sweeping circuit values.
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There are several ways to get a graphical view of an array node. In the examples all of them. In
HelloC.cir a wavelet compressed node is to be viewed. This requires special processing.  Render
is a 32 bit InProcess Server that connects to OLE compliant container application and allows
array data to be viewed in real time.

To start Render;

• Double click on the Oclient application located in the Oclient directory of the CMSDK.

• From Oclient’s Edit menu, select the Insert renderArray function.

• The renderArray object will be placed and the render dialog will be displayed.

• The insertion pointer will be in the Project edit field. Fill in the name of the circuit. Note: The
name is case sensitive. Use the File Manager, or Explorer, to determine the proper case for
the circuit name.

• Click in the Node edit field. Enter the node number, or name, of the node you wish to view.
Note: The Node name is case sensitive.

Due to OLE mechanics, the keyboard input belongs to the client application and not the server.
The TAB key will not function.

• Click the Apply button.
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After clicking the Apply button you can close the render dialog by clicking the Close button.
Render and Oclient are now ready to view the data for the desired node. As soon as the
simulation is started a link will be made and the data resulting from the simulation will be
displayed.

• Start the simulation of Helloc.Cir.

Notice, that data for the compressed waveform is displayed as the simulation progresses. The
following figure represents the compressed data for Helloc.cir. If render is installed, and
registered, you can play the view by double clicking on the figure.

Each of the traces in the 3D graph shown above keeps the largest values in wavelet space,
nulling out the remaining values. This would give a constant bandwidth solution, even when no
sound is present; clearly a better solution is to set an absolute threshold in order to eliminate
silent periods. You may wish to make your own compression/decompression algorithm and test it
using SALT!

Data.Cir
The Array code models can be used to sample data from an analog simulation and use the
sampled data as input to another analog simulation. In this example we will sample two nodes of
a sample analog circuit, Sample.cir, using the Array models. The circuit for this example is
shown below.
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The portion of the schematic that is of interest in this example consists of the A2M, Analog-to-
Matrix model and the SNK_1, Sink Array model. These are X1 and X2 respectively.

The Analog-to-Matrix model was discussed in the Bridge.Cir example. This model takes the node
voltages for V(3) and V(8) and places them in an Array matrix that is sent to the Sink Array
model. The Sink Array model was also discussed in a previous example, Hello.Cir. However, in
this example we are not playing a sound, we are recording data. This configuration of the Sink
model is established by the Sink’s model line shown below.

.MODEL data_snk mat_snk( op="sink"   ; use the Array_sink server
+ argname="matrix_file delay=99n tol=10u"
+ output=Data.dta  )

The argname  parameter for this model contains three new entries to configure the output for the
sampled data. The matrix_file  entry tells the Sink server to output a file containing matrix
elements. The delay  entry is used to compensate for the period delay built into the array
models. It eliminates the first “dead”  period of output.

The tol entry assures that the data can be reconstructed using linear interpolation to an
absolute tolerance of 10u.

The result of the circuit is a file, Data.dta, that contains the sampled data from the simulation.
The sampling rate is determined by the mode’s tol parameter and the time steps selected by
the IsSpice4 simulator. The format of the file is quiet simple. A small header is placed at the top
of the file followed by the sampled data. A partial listing is shown below.

Project: DATA
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Instance: a56:x2
SCALE 1
DATA REAL
varstep
0 1.45871  0.659409
7.80315e-010 1.4505  0.667121
1.56063e-009 1.39972  0.67796
2.34094e-009 1.31225  0.685685
3.12126e-009 1.18836  0.68861

A description of the contents of the matrix file can be found in the Data File Syntax section.

Stimulus.Cir
In the previous example we saw how to sample an analog simulation using the array code
models. In this example we use the sampled data as stimulus to an analog circuit. The circuit we
will use is shown below.

out

reset

clk_out

nodata

X1 SRC_1

in  
out_1

out_2

m2a_001

X2 M2A_001

V(1)
VOUT_1

V(2)
VOUT_2

V(5)
VCLK

 A  D 

3

4

6

1

25

The two main components of this circuit, X1 SRC_1 and X2 M2A_001, have been discussed in
previous examples. The new feature we are demonstrating is controlled by the Source Array
model found in SRC_1. The model statement is shown below.

.MODEL data_src MAT_SRC(OP="SOURCE"
+ ARGNAME="MATRIX_FILE"
+ DIM=[128 3]
+ PERIOD=99N
+ COMPRESS = 0
+ INPUT=Data.DTA  )

All of the parameters are similar to previous examples. The only new item in this model is the
parameter assigned to argname . The matrix_file  entry instructs the Source server to read its
input from a file name by the input  parameter. The source reads a periods worth of data into
the array matrix established by the dim model parameter. After every complete period the
Clk_out signal goes high. At the end of the data file the nodata signal goes high. This is fed into
the reset signal which instructs the source to repeat the contents of the file. Hence we have a
repetitive input signal from a finite set of data.

When playing back, the last array read in is played over and over if the simulation is run for a
longer time than specified in the array. If you want the signal to stay at the last value, copy the
last value in the file and change the time to something greater than the maximum simulation
time. If the nodal output is connected back to the reset input, the data input will be recycled at
the first period after the last input time. For periodic signals it is best to specify exactly one
period of data so it won’t matter if the nodata output is connected to the reset input. The following
figure shows the result for several cycles, illustrating how the time step is reduced for rapidly
changing data without the usual IsSpice4 breakpoints being introduced.
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Random.cir
This example illustrates how a random noise generator can be introduced into a simulation. The
schematic is shown below.
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The circuit consists of one subcircuit that contains an Array Source model and an
Matrix_to_analog bridge.

.SUBCKT RANGEN hi lo

.MODEL MAT_TOA_003 MAT_TOA(DIM=[128] LOC=[1 1 ] )

.MODEL MAT_SRC_001 MAT_SRC(OP="SOURCE"
+       ARGNAME="RANDOM SEED={ SEED }"
+         DIM=[128]
+       PERIOD=99N
+       COMPRESS = 0
+       )
A1 99 CLOCKOUT2  RESET RESET MAT_SRC_001
A2 99 [2] MAT_TOA_003
E1 hi lo 2 0 { Mag }
.ENDS

The subcircuit uses Intusoft’s parameter passing feature to facilitate experimentation with the
random number seed. (See the IsSpice4 User’s Guide for details about Parameter Passing.) The
array model of interest for this example is MAT_SRC_001. The parameters for this model have
been discussed previously. The only new items are the entries on the argname line. The
RANDOM  entry instructs the Source server to generate random values to be used as input to the
simulation. The random numbers that are generated are controlled by the SEED  value specified.
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The SEED  value is used to initialize the random pattern for each simulation. Using different SEED
values for different random sources will insure that the sources are uncorrelated, but give
repeatable data for each simulation.

The resulting IntuScope FFT show the effects of time step and accuracy on the frequency
spectrum.
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The time step is automatically constrained by the Matrix-to-Analog bridge to give the default
accuracy to the analog node ( steptol=.005). However, since the internal time step of the
simulation varies with circuit activity the value used for a specific analog time may be an
interpolation of adjacent values as shown below.

P0

P1

P2Q0
Q1

In the above figure points P0, P1, and P2 are the data generated by the random noise source.
Points Q0 and Q1 are interpolated points. This value to value correlation could, in one extreme,
produce completely independent points (no Q points). In the other extreme the interpolated
points become the average of the points produced. This causes the signal to be the average of
successive random numbers. This phenomena will cause the high frequency terms to be
attenuated and is apparent from the FFT of the noise signal. (Note, the FIR filter response of the
average of 2 samples is a cosine shape, going to zero at ½ the sampling frequency).

Vector.cir (Creating IsSpice4 vectors to view array data)
Viewing array contents is accomplished using 3 methods:

1. Convert array variables into analog nodes using node bridges.
2. Convert array variables into analog IsSpice4 vectors using a sink server.
3. Use Render.dll to view data formats for which plot drivers have been created.

This example focuses on the second method to illustrate viewing array data. The second method
uses less computational overhead than the first method because the analog data does not have
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to be processed for each iteration. It also allows output to be viewed for cases not supported by
the third method, such as complex data. The schematic for this example is shown below.
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From the schematic we can see that an analog signal is converted to an array matrix, A8
A2M_001, that is then sent to a Sink mode, A7 M2V_001 (Bottom), controlled by the following
model statement.

.MODEL M2V_001 MAT_SNK( op=sink argname=vector)

Here we see the familiar op parameter signifying the use of the Sink OLE Automation server.
We also see a new entry for the argname  parameter. The vector  entry on the argname
parameter instructs the Sink server to produce an internal IsSpice4 vector for the output matrix
node it is connected to. For this case, we see the Sink model A7 connected to node 5 of the
Analog-to-Matrix model A8. This produces an analog vector for the output of A8. The resulting
vectors are enumerated for each element of the matrix array. Here we have a [128 1] array
matrix. Therefore, we get an IsSpice4 vector of A8_1. If this were a [128 2] we would get two
vectors, A8_1 and A8_2. The enumeration is done from the first memory location to the last. If
you recall the figure shown in the Array section we see that an [8 3 4] array matrix would produce
A8_1 to A8_12. One IsSpice4 vector for each of the vectors in the array matrix. For each set of
IsSpice4 vectors created for an array matrix node an independent variable is also created. This
independent variable will be named relative to the array model such as A8_time or A8_freq.
When displaying the IsSpice4 vector data it is important to use the correct independent axis
data.

The output from A8 is also sent to an array model that performs an FFT. The result of this FFT is
sent to two Sink models; A12 M2F_001 and A6 M2V_001. The Sink model A6 is identical to the
Sink model previously discussed. The Sink model A12 is used to produce the array matrix output
similar to that covered in the Data.Cir example.

The vectors created by this Sink function are available during a simulation and while the
IsSpice4 simulator is running. A list of available vectors can be obtained by issuing the IsSpice4
ICL command display from IsSpice4’s Simulation Control dialog. Please see the IsSpice4 User’s
Guide for more information.
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The result of a Display command for this example is shown below.

V(1)                : voltage, real, 102 long
V(12)               : voltage, real, 102 long
V(4)                : voltage, real, 102 long
a10_1               : notype, real, 128 long
a10_time            : notype, real, 128 long
a8_1                : notype, real, 128 long
a8_time             : notype, real, 128 long
a9_1_im             : notype, real, 128 long
a9_1_re             : notype, real, 128 long
a9_freq             : notype, real, 128 long
time                : time, real, 102 long [default scale]

These vectors can be accessed using IntuScope. Notice that each sink instance has its own copy
of an independent variable. You need to choose the independent variable the belongs to the
correct array in the IntuScope dialog, effectively making this an x-y plot. (See the Design Entry
And Data Analysis Manual for details on using IntuScope.)

FFT.Cir
This example illustrates the use of the Fast Fourier Transform, FFT, to produce the frequency
domain response that is the impulse response of a test network. In a later example we will use
this response to build a convolution filter. Several unique features of the matrix file I/O are
illustrated in these examples.
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In this example we find two new Array elements, X2 and X3, performing an FFT and an IFFT
respectively. The remaining elements have been discussed in other examples.

This circuit takes the analog output of a simple RC ladder and feeds it to an Array-to-Matrix
bridge. This bridge reads one period of data, as defined by the A2M_002 subcircuit, and feeds it
to the ARRAY_001 subcircuit. This subcircuit consists of an Array model with the following model
statement.

.MODEL array_001 array( dim=[128 1]
+ o="fourier"
+ agname="fft timeToFreq")

This model describes an Array model that uses the Fourier OLE Automation server, given in the
op parameter, to perform the function specified in argname . The output of this Array model
flows to another Array model described by the following model statement.
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.MODEL array_002 array( dim=[128 1]
+ op="fourier"
+ argname="fft freqToTime")

This model, similar to the previous Array model, uses the Fourier OLE Automation server. This
device performs an inverse fft on the input data as specified by the argname  parameter.

The output of subcircuit X2 also flows to a Sink Array model that is controlled by the following
model statement.

.MODEL mat_snk_001 mat_snk(op="sink"   ; use the Array_sink server
+ argname="matrix_file autoscale tol=100u"
+ output=fft1.dta  )

Here we see that the sink model is used to construct a matrix_file  named fft1.dta. This file is
the desired output of this example. A portion of the contents of this file are shown below.

Project: FFT
Instance: a3
SCALE AUTO
DATA COMPLEX
varstep
0 0 0
0.984375 0 0
0 0.98685 0.00338636
0.015625 0.759111 0.481766
0.03125 0.378214 0.619598
...
0.984375 5.92339e-014 1.03307e-015

Notice that the output is complex. The complex data type was automatically determined by the
fft model. Autoscaling is set using the autoscale keyword. This means that the independent
variable is normalized, running from 0 to 1. When the data is read back, for filtering, it will be
adjusted to the period of the array. In this manner, a filter can be applied to a wave shape,
independent of its frequency. In order to compress the stored data, the tol=100u  parameter
causes the output of data for an absolute accuracy of 100u. The error limit assumes data will be
uncompressed using linear interpolation; therefor, a change in slope is necessary to cause extra
data to be saved.

FFT_Conv.Cir
In this example we use the data collected by the previous example, fft1.dta, and the data
collected from the Data.Cir example, Data.Dta, to construct a convolution filter.
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Recall that the output of the previous example was the impulse response of the RC circuit. The
data collected represent the impulse coefficients for the filter. These coefficients are used in a
frequency domain multiplication to filter the signals collected by the Data.Cir example.

In order to use FFT1.Dta as input to the filter we first have to edit the file. First enter the
following line before the DATA COMPLEX line

MATRIX_TYPE = STANDARD

This is required because the data is used as input to the circuit. Recall from the XXXX section
that matrix types are inherited. Since there is Array model to inherit from at the input we must set
the matrix type. This keyword is not required for the Filter.Cir example since the file is used as
input to a model that inherits a matrix type.

After entering the matrix type remove the second and third data lines;
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0.984375 0 0
0 0.990555 0.00313012

from the file. This data represents the erroneous points for the first “dead” period. After doing this
move to the end of the file and place the END keyword after the last line. See the FFT1.FIR file
for more a complete listing of the input file.

The inputs VIN1, VIN2, and VIN3 are transformed to the frequency domain by means of the FFT
performed by X9. The output of this FFT is sent directly to an IFFT block where the original
signal is recovered. (Delayed by the periods specified.) The output of the FFT block is also sent
to X15 MMCONJ where the frequency domain input signals and the impulse coefficients from
fft1.dta are multiplied. This output is transformed back to the time domain by the IFFT block and
the output is displayed as VO1, VO2, and VO3.

Filter.Cir
This example combines all of the aspects of the previous example to demonstrate the
convolution filter built into the Array model.
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The element of interest here is the convolution element, X7. This model eliminates the need for
the FFT, IFFT and MMCONJ blocks of the previous example. The model statement for the array
model is shown below.

.MODEL CONV_001 array( dim=[128 3]
+ op="fourier"
+ argname="convolution"
+ paramfile="TEST1.FIR")

As with the FFT and IFFT models discussed in the previous examples this array model uses the
Fourier OLE Automation server to perform the convolution function described by the argname
parameter. The additional parameter, paramfile , contains a text description of the coefficients
for the convolution filter. This file is shown below.

SCALE AUTO
DATA COMPLEX CIRCULAR
varstep
0 1 0
.00001 0 1
1 0 1
END

The improvements made in this model over the pervious implementation of a convolution filter,
FFT_Conv.Cir example, is that circular convolution is handled without extensive work. That is,
by entering the CIRCULAR keyword on the DATA line of the input filter file we instruct the
convolution algorithm to perform circular convolution. Time domain data, when transformed to
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frequency, has unique properties at frequencies greater than ½ the sampling frequency. The
resulting frequency spectrum, above this Nyquist frequency is the complex conjugate of the
lower frequency spectrum, due to the time series having no imaginary terms. When using this
spectrum in a filter, it produces what is called “circular” convolution which causes the filter to
appear periodic. For aperiodic filtering, it is necessary to make the second half of the frequency
spectrum zero. This effectively doubles the length of the filter. If you are applying a filter to a
periodic wave form use the CIRCULAR keyword. Note that these convolution filters are only
approximations of continuous filters. The impulse response must approach zero at the end of the
filter period. Filters that don’t meet this criteria will tend to become circular.

Since the FFT_Conv.Cir example did not account for the circular nature of the data the answers
will appear different. This is most evident if you examine the pulse input, V2, as it propagates
through both circuits. It is not as evident in the periodic waveforms such as the first output node
VO1 in both circuits.

Sensor.Cir
As shown in the Data File Syntax section, a SALT source can represent a family of points flying
through a 3 dimensional space. The following Figure puts this together with a sensor model that
illuminates the objects with a continuous pseudo random signal.
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The return signals are detected using a quad sensor. The four time varying target signals, T1,
T2, T3, and T4, can be thought of as samples at the aperture of a large lens. It may then be
possible to map these signals to the focal plane and image the objects. To do this the way a
camera works, one would perform a 2 dimensional Fourier transform, described in literature as a
Fresnel equation.

There are 2 major differences for the problem as presented. First, the illumination of each object
(T1, T2, T3, and T4) comes from the same source of radiation so that there is a cross correlation
between signal received at each element. Secondly, the aperture sample uses only 4 points.
Using the Fresnel equation, there are only as many image plane pixels as there are aperture
sensors. Imaging many pixels from a few sensors is very similar to the imaging problems faced
by Radio Telescopes. The main problem is that radiation from several objects can combine to
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produce phantom or ghost images. Using a coherent illumination source lets us perform multiple
cross correlation’s; not only along the x and y axes but also along the diagonals. Unfortunately,
the diagonal beams are narrower than those formed in the x-y direction so that it is possible to
miss a target. If the beams are widened, then more ghost images are formed. In the following
figure, (origin =-50,-50,0  scale =100,100,100 )

the target tracks are shown over the 10 seconds of simulation.

The following figure (origin = 0,0  scale =64,64 ) is the processed image plane data seen on the
64 x 64 image plane, recovered from a quad aperture sensor, illustrating the ghost image and
showing the actual image. The source code for the detector has several optional switches that
can be invoked from the debugger at run time to evaluate tradeoffs between detecting false
images and missing real images.

Hardware.Cir
In this example we will use two new functions in the Source and Sink OLE Automation Servers.
These functions provide access to external hardware during an IsSpice4 simulation. The
schematic representing this simulation is shown below.
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From the figure we can see that the input to the simulation is read from a file of sampled data.
The input data can be taken from any source. A file was used here for the sake of simplicity. This
sampled data represents the output from the Data.Cir example. This data is converted to analog
signals that are combined with a standard IsSpice4 pulse source and transformed back to an
Array matrix. These three signals are then sent to the Sink Array server that calls the dac
function of the Sink server. This is shown in the following model statement.

.MODEL MAT_SNK_001 MAT_SNK(OP="SINK"
+       ARGNAME="DAC NATIONAL INITFILE=AFILE.DTA"
+       OUTPUT=NIDAC2.CFG  )

The argname value specifies the functions type, DAC, card vendor NATIONAL , and the
initialization file, INITFILE . The initialization file is used to centralize the configuration
information for the specific digital to analog converter (DAC) card being used. The format is
shown below.

BOARD=AT-AO-6/10
GROUP=1
DEVICE=2
RATE=58k
CHANNEL=0,1,2
ITERATIONS=0
GAIN=10k ,.6k , 500
OFFSET=-.66 , -.7 , -.5
END

Once the signal leaves the HARDSNK subcircuit it is a live signal ready to use at a test bench.

When returning from the test bench the signals enter the HARDSRC, Source Array server. The
controlling model statement is shown below.

.MODEL MAT_SRC_002 MAT_SRC(OP="SOURCE"
+       ARGNAME="ATOD NATIONAL "
+         DIM=[128 3]
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+       PERIOD=99N
+       COMPRESS = 0
+       INPUT=NIATOD.CFG )

The INPUT parameter is used to specify the configuration file. The format for the configuration
file is shown below.

BOARD=AT-2150
GROUP=1
DEVICE=1
RATE=10k
CHANNEL=0,1,2,3
ITERATIONS=0
GAIN=.9e-4
OFFSET=0
COUPLING=DC
TRIG_CHANNEL=2
TRIG_LEVEL=0
TRIG_TYPE=ANALOG
TRIG_SLOPE=1
END

The signals are then sent to a Matrix-to-Analog bridge to be used in an analog simulation.

Appendix A: IsSpice4 Vectors

Spice accumulates output data for each analysis as a set of vectors. Data is output to each
vector as the simulation proceeds; therefore, the nth element of each vector corresponds to the
same analysis point. In the AC analysis, the data points correspond to frequency. In the transient
analysis, the points correspond to time. Spice stores a default vector, time or frequency so you
can find the independent variable for each plot. You can get a summary of information about the
current plot vectors using the “display” command in the IsSpice4 Simulation Control Panel Script
field as shown below for the sample.cir project.

Title: SAMPLE
Name: tran1 (transient)
Date: Tue Dec 05 13:02:45  1995

    V(1)                : voltage, real, 61 long
    V(11)              : voltage, real, 61 long
    V(11)              : voltage, real, 61 long
    V(3)                : voltage, real, 61 long
    V(3)                : voltage, real, 61 long
    V(8)                : voltage, real, 61 long
    V(8)                : voltage, real, 61 long
    time                : time, real, 61 long [default scale]

Spice vectors can be converted from variable spacing to uniform spacing using an interpolate
function. Interpolation is available using the linearize command in the Simulation Control Panel
Script field, as a check box in IntuScope or as an API call in the SALT SDK. When the
independent vector is uniformly spaced, then it is possible to get meaningful information from
mathematical operations such as mean, rms or standard deviation. The uniformly stepped
storage is what we generally use for Array Processing. The graph shown below illustrates the
data point spacing for the original Spice vector and the interpolated vector from the output of the
sample project. You can see that there is a loss in accuracy where Spice collected lots of data
and the interpolator output fewer data points.
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When using Arrays, you will have to set the vector size sufficiently large in order to
accommodate the highest data rate of significance and minimize this type of data loss.  From a
practical point of view, there cannot be significant data content at frequencies that are outside of
your sample bandwidth (1/2 the sample rate for low pass applications).
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If you are using the SALT SDK, then you have access to create and view Spice Vectors. The
code in toarray.cpp illustrates how to read vector data, and the code in sink.cpp shows how to
create vectors. Moreover, the entire Interactive Command Language, ICL, is at your disposal
through the command data structure, accessed using spc_coms_ptr illustrated in errors.c and
sinkxtra.c.  ICL includes a math parser so that you can perform a wide range of operations.
Unlike Spice, you can perform these operations while the simulation is running.

Appendix B: Names Used To Identify Servers And Files

The following names are used in various combinations to access data files and DLL’s:

1. Project name
2. Instance name
3. Node name
4. The op model parameter name

Any process that wishes to examine SALT data must know the first three names. Table SAT.1
shows how these names are combined to give access to various to the data.
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Name Function Example

Model parameter Used to derive the registry program fourier.dll
op=<server name> ID name ProgID = Array_<server name>

ProgID = Array_fourier
stored in <server name>.dll

Model's memory mapped file Data storage and communication flags sample_a2_99
accessed using privatefileptr used by array, source and sink servers

projectname_instancename_nodename

Node's memory mapped file used by array, array_to_analog, sample_4_public
accessed using publicfileptr sink and
rendering servers projname_ nodename_public

Running object moniker used to identify running sample_4_public_user.2
objects, that is, nodes being rendered by
the render server
projname_ nodename_public_user_<view number>

Running object file a memory mapped file for each node sample_4_public_view
that keeps track of the view numbers
associated with active render objects
projname_ nodename_public_view

Real vectors default, usually time a2_time
instance a2, vector 3 a2_3

Complex vectors default a3_freq
instance a3, vector4 a3_re_4

a3_im_4

Appendix C: Memory mapped array data
Items marked  by  are offsets to data stored in the memory mapped file after this data
structure. They can be accessed using the following macro:

#define arrayPtr( array,offset,type)(type*)((char*)(array)+array->offset)

For example;

double * data = arrayPty(( arrayFile *) aptr, arrayOffset,double)

The following typedef is reproduced from the common.h header file.

typedef struct {
char modelData[256]; // a place for the server to sick instance data and status,

  // including pointers
char errorMessage[128]; // a C string, if errorMessage[0], output the

// message and stop the simulator
char instancename[32];
char projectname[32];
long numOutConnections;
long wordsize; // number of bytes in a word
long blocksize; // size of block to read in doubles, see sourc.cpp

MODELS model; // tell the server what model is invoked
void * instance; // a copy of the c++ instance
long done; // we have finished using private data, set to zero on reset
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double compression; // the requested percentage used by server to compute the
// compressed param

long compr essed; // if not zero, it tells us that we are using compressed
// data and gives us the length of that data
// the compressed vector; time for example, is stored at the
// end of the array

double end; // the final value of the independent variable, usually time
double step; // the step for the independent variable, usually time which is the

// period parameter

double period; // step times number of samples
// this will be returned to the model on initialization

double cktstep; // tstep from spice
double cktstop ; // tstop from spice
double cktinit;  // initTime from spice
double ymax,ymin; // scaling range from server
long render; // a flag to tell the server the data has changed

// and needs to be rendered
// if the server is connected to a client that draws the rendered data,
// the server must issue an event to the client, the server clears
// the flag when done
// this requires the server to have a draw method...

long  nodata; // a flag the server uses to tell the client its out of data,

RESOLVE resolve; // tells us what to do with this array when its wired
// to another array, SUM, REPLACE, etc.

long numDim; // number or dimensions
long sizeOffset; // the size of each dimension stored at

// (long*)(start + sizeOffset), start = (char*)& arrayfile
char argname[ARGSTRLEN]; // the function arguments in ascii
long    numInFiles; // number in the list of input node names

 long inputFileNameOffset;  // name to access the input, each filename is
// FILENAMESIZE bytes long
// stored at (char*)(start + inputFileNameOffset)

 long paramFileOffset; // name including path of a file
// that stores coefficients needed by the operation
// (char *)(start + paramFileOffset);

double state;  // generally the time stamp from the simulator,
// which is the start time

long istate; // an alternate to state, incremented for each operation
 long  arrayOffset; // array of doubles stored at

// (double *)(& arrayOffset + arrayOffset)
long arraySize; // number of doubles in the array
} arrayFile;

Appendix D: Error handling:

Error handling in the servers is accomplished in two ways. If the error needs to abort the
simulation, then a text message is placed in the errorMessage member of the private memory
mapped file. The ABORT… macros in array1.h takes care of loading the appropriate memory
mapped file. You may need to set a flag in your server object when this is done so that no further
action will be performed until initialization or re-initialization.

The presence of an error message in the private file will cause the array code model to abort
Spice. If the simulator was running from the original netlist, the simulation will quit and the error
will be reported in the “.err” file. If the simulation was running from the script window, then the
error will be reported in the error/status window.  You may opt to also display a dialog to help
direct the user. If you do not want the simulator to abort; then you can either do nothing or put up
a modal MessageBox. Errors can cause memory leaks, that is, memory can be allocated and not
freed if the Spice simulator continues to run. This won’t cause data errors, but could restrict
performance.

If you are making your own array code model, then you can use IsSpice4 services directly.
These include automatic out of memory messages and aborts if you use the MALLOC, CALLOC,
REALLOC or FREE macros in codedefs.h. You can also use or modify the error_abort () method
in errors.c.
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Operating system errors are trapped using  __try(), __except() around the entire Spice program.
This allows us to do a somewhat orderly shutdown; however, neither Windows95 nor Win32s are

completely protected and neither does a complete cleanup when a program terminates. This
method only works when the error occurs in the IsSpice4 thread. Servers running in different

threads should have there own error recovery methods.

Arrays and Delays:

Arrays delay data. This allows easy insertion into IsSpice4 since the simulator knows ahead of
time where to make break points. Instead of scaling back the time step, it is only necessary to
adjust the time step to suit the analog input data accuracy. The down side is that iterations are
not possible except with an arrays worth of delay. Most control system problems work this way;
however, many models require iterations which can’t be accommodated using this technique.
When applicable this is a very fast way to couple external signal processing in and out of the
analog simulator. All synchronous logic works this way, as well as array based signal processing.
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