
AUTOMATING DIGITAL SIGNAL PROCESSING, DSP, DESIGN USING
AUGMENTED SPICE SIMULATION
Lawrence Meares, Intusoft, U.S.A.

Abstract
Coding for real time signal processing is tedious and error prone. Even when you get it “right”, errors
creep in. Clearly there is a need for computer automation to free the engineer from detailed book
keeping so that better algorithms can be implemented. Simulation, using SPICE, partially solves the
problem. Substituting a SPICE delay line for the z transform, z-1, is the usual approach. But as com-
plexity increases, the substitution breaks down, with instabilities above the sampling frequency that
are clearly impossible and sap computational efficiency. Even more troublesome is the increased
complexity when algebraic “feedback” occurs. Take, for example, a simple Buck regulator plant model.
The output voltage feeds back to the input, making the current through the inductor proportional to the
difference in output and input voltage. But the output voltage is proportion to this difference, making a
circular dependency. The simplest approximation is to selectively use backward Euler integration to
break this nasty feedback; while a “proper” solution is to solve the algebraic equation. But the detailed
implementation is so error prone, that the designer accepts loss in performance, just to get the job
done. This paper explores a new SPICE primitive model, Z-Delay that acts as a delay line in the fre-
quency domain; but in time domain looks like a sample and hold - no more high frequency oscillation!
Classically it’s really a z transform model, but when viewed from the outside, it looks like a zero-order
hold. Next, the system of algebraic equations can be solved using matrix reduction. Combining this
matrix solution in SPICE with automated code generation does the trick.

1. Summary

 A target design was chosen to illustrate the
power of DSP automation. Using a plant model
for a Buck regulator, the current feedback is re-
placed by an estimated current, that is, a virtual
current, from the model. This hidden variable re-
quires extra calculation and there is a complex
interaction between the output of the plant model
and the duty ratio of the controller. It will be
shown that a matrix reduction gives up a solution
to this problem and is easily automated for each
target digital signal processor, DSP.

1.1. A Close Look at the Z-Delay
model

The Z-Delay model is really quite simple. It sam-
ples the data every T seconds and outputs its
results after a TCOMP delay, where TCOMP is
the computational delay. When viewed with a
“probe”, it appears to be a sample and hold cir-
cuit. Unlike the SPICE transmission line, it has
no continuous output. It behaves just like a DSP
difference equation, so that oscillation above its
sampling frequency is impossible. For AC analy-
sis, it has the same properties as a transmission
line. Figure 1 shows an example of its behavior.

1 v(dd)

4.83m 4.94m 5.05m 5.16m 5.27m
time in seconds

354m

376m

397m

419m

440m

v(
d

d
)

in
 v

o
lts

P
lo

t1

1

Fig. 1. Duty ratio control illustrates Z-Delay
quantizing

This model is easilly added to SPICE simulators
using code models provided with the the Georgia
Tech. XSPICE [1] extensions.

1.2. A Target Design
The approach shown in Figure 2 uses a modified
Kalman filter [2]. The load current is estimated
using an extra control loop that makes the plant
model output equal to the actual buck regulator
output. This current estimate removes the need
for current sense components, thereby reducing
hardware cost. This is far too complex for an
analog controller, but fits nicely within the capa-

bility of a DSP. It turns out that noise is predomi-
nantly systematic, caused by A/D quantizing, so
that the usual Kalman filter noise measuring pro-
cedure can be replaced by beforehand knowl-
edge using simulation results.

Input
Filter

Output
Filter

z Transform
Compensation
& Control Law

Vout
Vin

Duty Ratio

Average PWM
Output Model

Output
Filter
Model

Vout Estimate

Load

+

-

DSP
Load Model

Iavg

Fig. 2. Target design block diagram

This illustrates that most of the control law com-
plexity is hidden within the DSP, hence the need
for improving both design and test procedures.

1.3. Matrix Solution

These DSP control equations can be expressed
using matrix algebra as shown in Figure 3. As-
sume there are j+k states that need to be evalua-
ted, with some of the k states having a delay his-
tory expressed using the z-delay model. The
equations can be arranged as shown with all tri-
vial solutions at the bottom of the matrix (these
are the z-delay outputs and A/D inputs).

1

1

1

a12

1

1

1

1

a13 V1 0

0

0

V1p

Vkp

V3

0

0

0

...

...

0

0

0

...

...

0

0 0

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0

a1j

a2j

a3j

a4j

ajj

a23

a34

... ...

0

0 0

0

V2

...

...

Vj

H1

H3

Hk

... ...

... a1(j+k)

a(j+k)(j+k)...

...

...

...

...

...

... ...

...

Fig. 3. A matrix solution has RHS(0thru j)=0

The solutions are trivial because they are all of
the form :

 Var = constant,

whether the constant value is an A/D input or a z-
delay output. Each of these constant values are
accumulated prior to perfoming a new iteration.
For z-delays they are the the matrix solutions
propogated from the z-delay input state to its
output. For the A/D inputs, they are measured at
the beginning of each computational cycle.

Then the j+k by j sub matrix at the top will have
its right hand side, RHS, equal to zero. The zero
RHS occurs because these equations are for-
med by summing states and histories for each
state variable ; that is,

 Var = sum(state*coeff)

then,

 Var – sum(state*coef) = 0

The importance of a zero RHS for these equa-
tions lies in the re-usability of the state matrix.
With a constant state matrix the same equations
are solved over and over with the computed his-
tories placed in the RHS of the z-delay outputs
for each sample. This matrix approach is the key
to removing the algebraic dependancy from the
DSP difference equations.

2. Z Transform Basics

Design and analysis of control systems are usu-
ally performed in the frequency domain; whereby
the time domain process of convolution is re-
placed by a simple process of multiplication of
complex polynomials in the frequency domain.
Sampled data systems use a similar concept
with a unit delay as the basic building block. The
analog s-plane maps into the sampled data z-
plane by substitution of variables where z=esT or
more importantly by

sTez  1

The later representation is seen to be identical to

a transmission line, with nz representing a de-
lay of nT seconds.

2.1. Direct Programming

Transfer functions, including impedance and
admittance functions, are described as polyno-

mial ratios of the form
D

N
G  , where

n
nzazaaN   1

10 and
n

nzbzbD   ...1 1
1 are the numerator and

denominator polynomials respectively. Notice
that b0 = 1. Then rearranging the following equa-
tion with D’ = D-1 yields:

D

N

Vi

Vo


 ViNDVo )1(

 DVoViNVo 

This is the “Direct” programming method that
is more rigorously derived in [3] pp 475,477.
This equation can also be implemented in
the s-plane using the following block dia-
gram with the unit time delay (UTD) replaced
by a SPICE transmission line. This imple-
mentation allows for SPICE analysis of the
time domain difference equations, including
both transient and ac analysis, and of course
Bode plots.

SUM2

K1

K2

2

18

4

K1 = a1
K2 = a0

UTD

X3
UTD

UTD
3

X1
UTD

SUM2

K1

K2

7

K1 = a2
K2 = 1

UTD
5

X5
UTD

z^-1 z^-2 z^-nz^-3

SUM2

K1

K2

8

6

1

K1 = an
K2 = 1

. . .

. . .

UTD
109

X8
UTD

UTD
12

X9
UTD

SUM2

K1

K2
11

13

K1 = b2
K2 = 1

UTD
14

X11
UTD

z^-1z^-2z^-n z^-3

SUM2

K1

K2

15

16

19

K1 = bn
K2 = 1

. . .

. . .

SUM2

K1

K2

K1 = 1
K2 = -1

Numerator

Denominator

Vi

Vo

GAIN

K = b1

Fig. 4. Direct Programming Method.

2.2 Finding s as a Function of z

Solving for s as a function of z in the z transform
yields

)ln(
1

z
T

s 

The ln(z) function can be broken down into 3
common approximations. Let’s first do this by us-
ing the first term of the series expansion yielding
the bilinear transformation:

1

1
2)ln(





z

z
z

For ,/1 Tw  zz 21 further simplifies to:

z

z
z

1
)ln(




Alternatively 21z , and

 ln(z) = z-1

Then, the 3 approximations are:

 1
1

 z
T

s

 





 


z

z

T
s

11

 











1

12

z

z

T
s

The second representation is the one commonly
used [3] pg 741 in the z-transform tables.
Mathematically it is common to let T = 1 and omit
it from the tables, leaving it to the user to scale
the result for other sample frequencies. If you fail
to account for T, then you will get the wrong an-
swer! Restating the above equations to repre-
sent integration and delays yields:

Rectangular, backward Euler, integration

 









 



1

1

1

1

z

z
T

s
 eq 1

Rectangular, forward Euler, integration
(z Transform)

 









 11

11

z
T

s
 eq 2

Trapezoidal integration
(Bilinear transform)

 










 



1

1

1

1

2

1

z

zT

s
 eq 3

There are 3 interpretations to these equations in
terms of integration method, although they were
derived here from a series expansion; they could
have also been derived in time domain using
rectangular and trapezoidal integration methods.
These representations have several interesting
properties.

First, eq 1, has a step response of z-1, which is
interpreted as the dead-beat response, that is,

the error to a step response will be reduced to
zero in one sample time. That’s the holy grail of
digital control system design, so the loop com-
pensation should be designed to replicate that
behavior. Unfortunately, adding 6dB of gain
makes it unstable.

The second equation gives good results for con-
trol system compensation as shown in figure 5;
the phase is leading near the nyquist frequency,
providing added margin.

1 ph_is 2 db_is 3 ph_iz 4 db_iz

10k 20k 50k 100k
frequency in hertz

3.00

9.00

15.0

21.0

27.0

db
_i

z,
 d

b_
is

 in
 d

B

-80.0

-40.0

0

40.0

80.0

ph
_i

z,
 p

h_
is

 in
 d

eg
re

es
P

lo
t1

1324

s-plane phase

z-plane phase

s plane magnitude

z-plane magnitude

Nyquist Frequency=50kHz

Fig. 5. Z Forward Euler integration compared to
s-plane integration shows massive phase lead.

Finally, eq 3 inserts a term that averages the pre-
vious sample with the current sample. The
average of 2 samples at ½ the nyquist frequency
is exactly zero for any signal, at Fs/2, regardless
of its phase because the 90 degree phase
shifted signal is always equal in magnitude and
opposite in sign at Fs/2. The phase stays at 90
degrees up to Fs/2. This property is useful for
constructing algorithmic sine/cosine generators.

3. Making the Plant Model
Using the elementary z-transforms discussed
previously, the DSP equations for a plant model
can be developed from the block diagram shown
in Figure 6. Notice that polynomial functions are
not combined. There are several reasons behind
this. First, the inductor current must be available
as the hidden control system variable. But impor-
tantly, combining z-transforms into higher order
polynomials may lead to coefficient scaling that
either overflows or underflows the DSP word
length.

The admittance,
L

L RLs
Y




1

SUM2

K1

K2

Vin*D

YL

Z C

I L

Vout

ILOAD

Fig. 6. DSP plant model

and the impedance,
Cs

RZ CC

1
 are formed

using z transform integrators and the direct pro-
gramming method discussed earlier.

3.1 Plant Model Difference Equations

Both Vin and ILOAD are variables; however, they
are taken as constants here in order to simplify
the discussion. The equations can be written by
inspection from Figure 6;

)(OUTINLL VDVYI 

)(LoadLCOUT IIZV 

First, YL is converted into a z-transform in a form
that can be easily coded using the direct pro-
gramming method.

1
2

1

1 


zK

K
YL

where
TRL

T
K

L
1 and

TRL

L
K

L
2

 Next, ZC is similarly programmed.

 








 11

1

zC

T
RZ CC

The schematic representation, from which DSP
equations can be written by inspection, is shown
in Figure 7.

SUM2

K1

K2
9

3

K1 = 1
K2 = -1

SUM2

K1

K2
22

K1 = T/(L+RL*T)
K2 = L/(L+RL*T)

19

Va

4

Va
I

V

SUM2

K1

K2

7

K1 = -1
K2 = 1

IloadLoad Current

L

C

SUM2

K1

K2

K1 = T/C
K2 = 1

SUM2

K1

K2

K1 = R
K2 = 1

VL VCC

Backward Euler

Forward
Euler

IL

IC

ILD

ZDELAY

Z - 1

ZDELAY

Z - 1

V2
unknown

V5
unknown

Fig. 7. DSP z-transform plant model

If IL is connected to the “Backward Euler” node,
then the algebraic feedback is broken and the
difference equations can be written directly from
the schematic. But if the “Forward Euler” node is
used, there is an algebraic dependency that
must be removed by solving the simultaneous

set of equations. Overall control system phase
margin is better using forward Euler integration
because of its phase lead at high frequency
(Figure 5). Two controllers are added to com-
plete the control system design. First, the plant
model output voltage is matched to the meas-
ured output by setting the load current to the in-
tegral of the error. Lead-lag compensation is
added. Next, the Output error is integrated and
summed with the hidden average current vari-
able to control Duty ratio. Again, lead lag com-
pensation is used to get acceptable gain and
phase margins. The number of equations for this
complete solution increases dramatically and
there are several algebraic feedback loops, re-
quiring computer automation for implementation.

4. The SPICE Matrix
The schematic of Figure 7 can be used to run a
SPICE simulation. SPICE enters the circuit net-
list into a modified nodal admittance, MNA, ma-
trix. It then re-arranges the matrix to pre-
condition it for solution by LU decomposition.
The general problem SPICE solves has non-zero
terms in the RHS. LU decomposition can use the
matrix over and over to iterate to a solution. Un-
fortunately the non-zero RHS requires both for-
ward and backward substitution. The matrix
shown in Figure 3 doesn’t need forward substitu-
tion because the RHS in the upper portion is
zero. So it is necessary to extract just the parts
of the matrix that are needed and re-arrange
them according to the previously described algo-
rithm. This is accomplished by expanding the
SPICE simulations to include a .DSP simulation
type. This is basically an operating point solution
that outputs the DSP specialized matrix to a
SPICE .out file. Then a separate software pro-
gram reads in the matrix and forms the DSP
code for each target processor. All of this can be
integrated into a simulation environment, produc-
ing source files that are added to the DSP devel-
opment environment.

4.1. Eliminating Intermediate States

The only states needing a solution for each itera-
tion are the z-delay inputs and DSP outputs.
Other states need not be evaluated. The trick to
eliminating these states is to place them at the
top of the matrix and then use gauss elimination
to make all matrix entries below the main diago-
nal zero. Then, when performing backward sub-
stitution, DO NOT evaluate these variables in the

top rows!

4.2. Conditioning the Matrix
As the number of variable increase, the matrix
tends to become sparse; that is, most entries are
zero. Reduced instruction set, RISC, architec-
tures may require extra instructions because the
next state index may not be close enough to the
previous index. This situation can be remedied
by moving the trivial equations upward in the ma-
trix until they are just below a row that uses the
state variable. Notice that all values below the
moved row are zero because that’s how the triv-
ial solutions are defined. It is then possible to
move the column left until it resides on the main
diagonal. No fill-ins below the main diagonal are
added by doing this; however, the non-zero ma-
trix values will cluster near the main diagonal,
eliminating the need to reload the state index.

4.3 Building the Matrix

The matrix equations for the circuit Figure 7 have
been solved as shown in Figure 8. That was ac-
complished by placing unwanted variables in the
top rows and using Gauss elimination to triangu-
larize the matrix. Space does not permit illustrat-
ing the complete Gauss elimination procedure.

VL

IC

IL

Vcc

VC

Va

ILd

ILP

VccP VccPi

ILPi

ILdin

Vain

1

1

1

1

1

1

0

00000000

0000000

000000

00000

00

000

-11 0000 00

00000

0

0

0

0

0X =

0-1 1

0 0 0 0 1 d e f -1

0 cb-aa0 00 1

-10 -R 00R010

Parameters
K1=T/(L+RL*T)
K2=L/(L+RL*T)
K3=T/Cf
R=RC
a=k1/(1+R*K1)

Parameters
b=-R*K1/(1+R*K1)
c=-k2/(1+R*K1)
d= -a*k3/(1+a*k3)
e=(1+b)*k3/(1+a*k3)
f=c*k3/(1+a*k3)

Fig. 8. Gauss elimination solves the matrix

The strikeouts in Figure 8 represent the elimina-
tion of VL (voltage across the inductor) and IC
(capacitor current). The solution has 11 non-zero
matrix entries requiring multiply-accumulate
operations. The matrix before solution had 10
non-zero entries; so that eliminating unneeded
variables produces a more efficient operation
than a solution using LU decomposition which
would require at least one fill-in. The parameters
block in Figure 8 can be evaluated using a
SPICE pre-processor.

4.4. Writing Difference Equations
First, snake a line from the topmost equation to
be solved down to the equation for the first non-
trivial state as shown in Figure 9 (Do not include
equations that are to be discarded, V1 in this
case).

1

1

1

a12

1

1

1

1

a13 V1 0

0

0

V1p

Vkp

V3

0

0

0

...

...

0

0

0

...

...

0

0 0

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0

a1j

a2j

a3j

a4j

ajj

a23

a34

... ...

0

0 0

0

V2

...

...

Vj

H1

H3

Hk

... ...

... a1(j+k)

a(j+k)(j+k)...

...

...

...

...

...

... ...

...

Fig. 9. Ordering of coefficients.

Then accumulate the coefficients in the order of
use as shown by the directional arrows. Notice
that the jth row may proceed in either direction
depending on whether there are an odd or even
number of solutions. That becomes the coeffi-
cient array. The states are indexed from the bot-
tom to the top, Vj to V2. For now, divide each row
by its main diagonal value so that no division (or
multiplication) is necessary when evaluating a
state variable. Then for each variable to be
evaluated, initialize the multiply accumulate
(MAC) register and perform the MAC operations
needed for the row. Alternate between 2 MAC
accumulators so that saving the result can be
delayed until the appropriate state variable is in
range. If a state variable index is too far away, it
must be reinitialized, adding an instruction each
time the situation is encountered. After accumu-
lating the result, it must be scaled and saved and
the MAC accumulator must be reinitialized. That
requires two instructions for each state plus a
MAC instruction for each coefficient. After solving
for the state variables, the solution for z-delay
inputs is propagated to the z-delay output in the
RHS, and The PWM output is sent to the DSP
modulator. Then the A/D inputs are sampled to
begin the next iteration.

4.5. DSP Architectures
Code generation for different DSP architectures
place different demands on the conditioning of
the matrix. RISC architecture, as used in Micro-
chip DSP’s, demand more attention to indexing.
While CISC architectures, typical of Texas In-
struments DSP’s, will have more efficient index-
ing but they use more instruction cycles.

4.6. A SPICE Subset

The entire family of SPICE primitive parts is not
required to describe the DSP operation. It is suf-
ficient to consider only the following:

 Voltage Source for inputs
 Z-delay code models for time delays
 Behavioral elements for mathematical

operations
 Nodes beginning with alphabetical char-

acters identify states for the required so-
lution.

Therefore, a SPICE net configuration conforming
to these rules forms the netlist for the .DSP simu-
lation.

5. Conclusion
Using a DSP opens new horizons for PWM algo-
rithm development, but exposes weakness in
computer automation. As complexity increases,
the use of a transmission line to simulate a delay
breaks down. Moreover, the difference equations
become more complex than can be handled by
hand calculation. A method of automation has
been disclosed that uses a SPICE simulator
supporting a new delay model and uses the
simulator to extract the basic matrix, which is fur-
ther manipulated using matrix algebra to yield an
efficient formation of difference equations. Future
work is needed to make the state variables in the
hardware available in support of SPICE AC, DC
and TRAN simulations; perhaps using an
embedded real-time operating system.

6. Literature
[1] F. L. Cox, et al.: Code-level modeling in

XSPICE: Proceedings IEEE International
Symposium on Circuits and Systems, (IS-
CAS 92), vol. 2, pp. 871-874: 10-13 May,
1992

[2] Lawrence Meares: SPICE Simulation
Provides Significan Advantages For a DSP
Based SMPS: Power Electronics
Technology Magazine: Part1&2: March-April
2009

[3] BENJAMIN C. KUO: DIGITAL CONTROL
SYSTEMS: 2nd EDITION, OXFORD
UNIVERSITY PRESS, 1992

