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Abstract 
Coding for real time signal processing is tedious and error prone. Even when you get it “right”, errors 
creep in. Clearly there is a need for computer automation to free the engineer from detailed book 
keeping so that better algorithms can be implemented. Simulation, using SPICE, partially solves the 
problem. Substituting a SPICE delay line for the z transform, z-1, is the usual approach. But as com-
plexity increases, the substitution breaks down, with instabilities above the sampling frequency that 
are clearly impossible and sap computational efficiency. Even more troublesome is the increased 
complexity when algebraic “feedback” occurs. Take, for example, a simple Buck regulator plant model. 
The output voltage feeds back to the input, making the current through the inductor proportional to the 
difference in output and input voltage. But the output voltage is proportion to this difference, making a 
circular dependency. The simplest approximation is to selectively use backward Euler integration to 
break this nasty feedback; while a “proper” solution is to solve the algebraic equation. But the detailed 
implementation is so error prone, that the designer accepts loss in performance, just to get the job 
done. This paper explores a new SPICE primitive model, Z-Delay that acts as a delay line in the fre-
quency domain; but in time domain looks like a sample and hold - no more high frequency oscillation! 
Classically it’s really a z transform model, but when viewed from the outside, it looks like a zero-order 
hold. Next, the system of algebraic equations can be solved using matrix reduction. Combining this 
matrix solution in SPICE with automated code generation does the trick. 
 

1. Summary 

 A target design was chosen to illustrate the 
power of DSP automation. Using a plant model 
for a Buck regulator, the current feedback is re-
placed by an estimated current, that is, a virtual 
current, from the model. This hidden variable re-
quires extra calculation and there is a complex 
interaction between the output of the plant model 
and the duty ratio of the controller. It will be 
shown that a matrix reduction gives up a solution 
to this problem and is easily automated for each 
target digital signal processor, DSP. 

 

1.1. A Close Look at the Z-Delay 
model 

The Z-Delay model is really quite simple. It sam-
ples the data every T seconds and outputs its 
results after a TCOMP delay, where TCOMP is 
the computational delay. When viewed with a 
“probe”, it appears to be a sample and hold cir-
cuit. Unlike the SPICE transmission line, it has 
no continuous output. It behaves just like a DSP 
difference equation, so that oscillation above its 
sampling frequency is impossible. For AC analy-
sis, it has the same properties as a transmission 
line. Figure 1 shows an example of its behavior.    
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Fig. 1. Duty ratio control illustrates Z-Delay 
quantizing 

This model is easilly added to SPICE simulators 
using code models provided with the the Georgia 
Tech. XSPICE [1] extensions. 

1.2. A Target Design 
The approach shown in Figure 2 uses a modified 
Kalman filter [2]. The load current is estimated 
using an extra control loop that makes the plant 
model output equal to the actual buck regulator 
output. This current estimate removes the need 
for current sense components, thereby reducing 
hardware cost.  This is far too complex for an 
analog controller, but fits nicely within the capa-



 

bility of a DSP. It turns out that noise is predomi-
nantly systematic, caused by A/D quantizing, so 
that the usual Kalman filter noise measuring pro-
cedure can be replaced by beforehand knowl-
edge using simulation results. 
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Fig. 2. Target design block diagram 
 
This illustrates that most of the control law com-
plexity is hidden within the DSP, hence the need 
for improving both design and test procedures. 
 
1.3. Matrix Solution 

These DSP control equations can be expressed 
using matrix algebra as shown in Figure 3. As-
sume there are j+k states that need to be evalua-
ted, with some of the k states having a delay his-
tory expressed using the z-delay model. The 
equations can be arranged as shown with all tri-
vial solutions at the bottom of the matrix (these 
are the z-delay outputs and A/D inputs).  
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Fig. 3.  A matrix solution has RHS(0thru j)=0 

The solutions are trivial because they are all of 
the form : 

 Var = constant, 

whether the constant value is an A/D input or a z-
delay output. Each of these constant values are 
accumulated prior to perfoming a new iteration. 
For z-delays they are the the matrix solutions 
propogated from the z-delay input state to its 
output. For the A/D inputs, they are measured at 
the beginning of each computational cycle. 

Then the j+k by j sub matrix at the top will have 
its right hand side, RHS,  equal to zero. The zero 
RHS occurs because these equations are for-
med by summing states and histories for each 
state variable ; that is, 

 Var = sum(state*coeff)  

then, 

 Var – sum(state*coef) = 0  

The importance of a zero RHS for these equa-
tions lies in the re-usability of the state matrix. 
With a constant state matrix the same equations 
are solved over and over with the computed his-
tories placed in the RHS of the z-delay outputs 
for each sample. This matrix approach is the key 
to removing the algebraic dependancy from the 
DSP difference equations. 

2. Z Transform Basics 

Design and analysis of control systems are usu-
ally performed in the frequency domain; whereby 
the time domain process of convolution is re-
placed by a simple process of multiplication of 
complex polynomials in the frequency domain. 
Sampled data systems use a similar concept 
with a unit delay as the basic building block. The 
analog s-plane maps into the sampled data z-
plane by substitution of variables where z=esT or 
more importantly by  

sTez  1  

The later representation is seen to be identical to 

a transmission line, with nz  representing a de-
lay of nT seconds. 

2.1. Direct Programming 
 
Transfer functions, including impedance and 
admittance functions, are described as polyno-

mial ratios of the form 
D

N
G  , where 
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denominator polynomials respectively. Notice 
that b0 = 1.  Then rearranging the following equa-
tion with D’ = D-1 yields: 
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This is the “Direct” programming method that 
is more rigorously derived in  [3] pp 475,477. 
This equation can also be implemented in 
the s-plane using the following block dia-
gram with the unit time delay (UTD) replaced 
by a SPICE transmission line. This imple-
mentation allows for SPICE analysis of the 
time domain difference equations, including 
both transient and ac analysis, and of course 
Bode plots. 
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Fig. 4. Direct Programming Method. 

 

2.2 Finding s as a Function of z 

Solving for s as a function of z in the z transform 
yields 

)ln(
1

z
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The ln(z) function can be broken down into 3 
common approximations. Let’s first do this by us-
ing the first term of the series expansion yielding 
the bilinear transformation: 
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Alternatively 21z , and  
 
 ln(z) = z-1 
 
Then, the 3 approximations are:    
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The second representation is the one commonly 
used [3] pg 741 in the z-transform tables. 
Mathematically it is common to let T = 1 and omit 
it from the tables, leaving it to the user to scale 
the result for other sample frequencies. If you fail 
to account for T, then you will get the wrong an-
swer! Restating the above equations to repre-
sent integration and delays yields: 
 
Rectangular, backward Euler, integration 
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Rectangular, forward Euler, integration 
(z Transform)  
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Trapezoidal integration 
(Bilinear transform)    
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There are 3 interpretations to these equations in 
terms of integration method, although they were 
derived here from a series expansion; they could 
have also been derived in time domain using 
rectangular and trapezoidal integration methods. 
These representations have several interesting 
properties.  
 
First, eq 1, has a step response of z-1, which is 
interpreted as the dead-beat response, that is, 



 

the error to a step response will be reduced to 
zero in one sample time. That’s the holy grail of 
digital control system design, so the loop com-
pensation should be designed to replicate that 
behavior. Unfortunately, adding 6dB of gain 
makes it unstable.  
 
The second equation gives good results for con-
trol system compensation as shown in figure 5; 
the phase is leading near the nyquist frequency, 
providing added margin. 
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Fig. 5. Z Forward Euler integration compared to 
s-plane integration shows massive phase lead. 
 
Finally, eq 3 inserts a term that averages the pre-
vious sample with the current sample. The 
average of 2 samples at ½ the nyquist frequency 
is exactly zero for any signal, at Fs/2, regardless 
of its phase because the 90 degree phase 
shifted signal is always equal in magnitude and 
opposite in sign at Fs/2. The phase stays at 90 
degrees up to Fs/2. This property is useful for 
constructing algorithmic sine/cosine generators. 

3. Making the Plant Model 
Using the elementary z-transforms discussed 
previously, the DSP equations for a plant model 
can be developed from the block diagram shown 
in Figure 6. Notice that polynomial functions are 
not combined. There are several reasons behind 
this. First, the inductor current must be available 
as the hidden control system variable. But impor-
tantly, combining z-transforms into higher order 
polynomials may lead to coefficient scaling that 
either overflows or underflows the DSP word 
length. 
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Fig. 6. DSP plant model 

and the impedance, 
Cs

RZ CC

1
  are formed 

using z transform integrators and the direct pro-
gramming method discussed earlier. 
 
3.1 Plant Model Difference Equations 
 
Both Vin and ILOAD are variables; however, they 
are taken as constants here in order to simplify 
the discussion. The equations can be written by 
inspection from Figure 6; 

)( OUTINLL VDVYI   

)( LoadLCOUT IIZV   

First, YL is converted into a z-transform in a form 
that can be easily coded using the direct pro-
gramming method. 

1
2

1

1 


zK

K
YL  

where 
TRL

T
K

L
1  and 

TRL

L
K

L
2  

 
 Next, ZC is similarly programmed.  
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The schematic representation, from which DSP 
equations can be written by inspection, is shown 
in Figure 7. 
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Fig. 7.  DSP z-transform plant model 
 
If IL is connected to the “Backward Euler” node, 
then the algebraic feedback is broken and the 
difference equations can be written directly from 
the schematic. But if the “Forward Euler” node is 
used, there is an algebraic dependency that 
must be removed by solving the simultaneous 



 

set of equations. Overall control system phase 
margin is better using forward Euler integration 
because of its phase lead at high frequency 
(Figure 5). Two controllers are added to com-
plete the control system design. First, the plant 
model output voltage is matched to the meas-
ured output by setting the load current to the in-
tegral of the error. Lead-lag compensation is 
added. Next, the Output error is integrated and 
summed with the hidden average current vari-
able to control Duty ratio. Again, lead lag com-
pensation is used to get acceptable gain and 
phase margins. The number of equations for this 
complete solution increases dramatically and 
there are several algebraic feedback loops, re-
quiring computer automation for implementation. 
 

4. The SPICE Matrix 
The schematic of Figure 7 can be used to run a 
SPICE simulation. SPICE enters the circuit net-
list into a modified nodal admittance, MNA, ma-
trix. It then re-arranges the matrix to pre-
condition it for solution by LU decomposition. 
The general problem SPICE solves has non-zero 
terms in the RHS. LU decomposition can use the 
matrix over and over to iterate to a solution. Un-
fortunately the non-zero RHS requires both for-
ward and backward substitution. The matrix 
shown in Figure 3 doesn’t need forward substitu-
tion because the RHS in the upper portion is 
zero. So it is necessary to extract just the parts 
of the matrix that are needed and re-arrange 
them according to the previously described algo-
rithm. This is accomplished by expanding the 
SPICE simulations to include a .DSP simulation 
type. This is basically an operating point solution 
that outputs the DSP specialized matrix to a 
SPICE .out file. Then a separate software pro-
gram reads in the matrix and forms the DSP 
code for each target processor. All of this can be 
integrated into a simulation environment, produc-
ing source files that are added to the DSP devel-
opment environment. 
 

4.1. Eliminating Intermediate States 
 
The only states needing a solution for each itera-
tion are the z-delay inputs and DSP outputs. 
Other states need not be evaluated. The trick to 
eliminating these states is to place them at the 
top of the matrix and then use gauss elimination 
to make all matrix entries below the main diago-
nal zero. Then, when performing backward sub-
stitution, DO NOT evaluate these variables in the 

top rows! 

4.2. Conditioning the Matrix 
As the number of variable increase, the matrix 
tends to become sparse; that is, most entries are 
zero. Reduced instruction set, RISC, architec-
tures may require extra instructions because the 
next state index may not be close enough to the 
previous index. This situation can be remedied 
by moving the trivial equations upward in the ma-
trix until they are just below a row that uses the 
state variable. Notice that all values below the 
moved row are zero because that’s how the triv-
ial solutions are defined. It is then possible to 
move the column left until it resides on the main 
diagonal. No fill-ins below the main diagonal are 
added by doing this; however, the non-zero ma-
trix values will cluster near the main diagonal, 
eliminating the need to reload the state index. 
 
4.3 Building the Matrix 
 
The matrix equations for the circuit Figure 7 have 
been solved as shown in Figure 8. That was ac-
complished by placing unwanted variables in the 
top rows and using Gauss elimination to triangu-
larize the matrix. Space does not permit illustrat-
ing the complete Gauss elimination procedure. 
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Fig. 8. Gauss elimination solves the matrix 
 
The strikeouts in Figure 8 represent the elimina-
tion of VL (voltage across the inductor) and IC 
(capacitor current). The solution has 11 non-zero 
matrix entries requiring multiply-accumulate 
operations. The matrix before solution had 10 
non-zero entries; so that eliminating unneeded 
variables produces a more efficient operation 
than a solution using LU decomposition which 
would require at least one fill-in. The parameters 
block in Figure 8 can be evaluated using a 
SPICE pre-processor. 



 

4.4. Writing Difference Equations 
First, snake a line from the topmost equation to 
be solved down to the equation for the first non-
trivial state as shown in Figure 9 (Do not include 
equations that are to be discarded, V1 in this 
case).  
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Fig. 9. Ordering of coefficients. 
 
Then accumulate the coefficients in the order of 
use as shown by the directional arrows. Notice 
that the jth row may proceed in either direction 
depending on whether there are an odd or even 
number of solutions. That becomes the coeffi-
cient array. The states are indexed from the bot-
tom to the top, Vj to V2. For now, divide each row 
by its main diagonal value so that no division (or 
multiplication) is necessary when evaluating a 
state variable. Then for each variable to be 
evaluated, initialize the multiply accumulate 
(MAC) register and perform the MAC operations 
needed for the row. Alternate between 2 MAC 
accumulators so that saving the result can be 
delayed until the appropriate state variable is in 
range. If a state variable index is too far away, it 
must be reinitialized, adding an instruction each 
time the situation is encountered. After accumu-
lating the result, it must be scaled and saved and 
the MAC accumulator must be reinitialized. That 
requires two instructions for each state plus a 
MAC instruction for each coefficient. After solving 
for the state variables, the solution for z-delay 
inputs is propagated to the z-delay output in the 
RHS, and The PWM output is sent to the DSP 
modulator. Then the A/D inputs are sampled to 
begin the next iteration. 

4.5. DSP Architectures 
Code generation for different DSP architectures 
place different demands on the conditioning of 
the matrix.  RISC architecture, as used in Micro-
chip DSP’s, demand more attention to indexing. 
While CISC architectures, typical of Texas In-
struments DSP’s, will have more efficient index-
ing but they use more instruction cycles. 
 

 

4.6. A SPICE Subset 

 
The entire family of SPICE primitive parts is not 
required to describe the DSP operation. It is suf-
ficient to consider only the following: 
 

 Voltage Source for inputs 
 Z-delay code models for time delays 
 Behavioral elements for mathematical 

operations 
 Nodes beginning with alphabetical char-

acters identify states for the required so-
lution. 

 
Therefore, a SPICE net configuration conforming 
to these rules forms the netlist for the .DSP simu-
lation. 

5. Conclusion  
Using a DSP opens new horizons for PWM algo-
rithm development, but exposes weakness in 
computer automation. As complexity increases, 
the use of a transmission line to simulate a delay 
breaks down. Moreover, the difference equations 
become more complex than can be handled by 
hand calculation. A method of automation has 
been disclosed that uses a SPICE simulator 
supporting a new delay model and uses the 
simulator to extract the basic matrix, which is fur-
ther manipulated using matrix algebra to yield an 
efficient formation of difference equations. Future 
work is needed to make the state variables in the 
hardware available in support of SPICE AC, DC 
and TRAN simulations; perhaps using an 
embedded real-time operating system. 
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